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ABSTRACT

On Non-Vanishing of Certain L-Functions

Shahab Shahabi

Department of Mathematics and Computer Science

University of Lethbridge

M. Sc. Thesis, 2003

This thesis presents the following:

(i) A detailed exposition of Rankin’s classical work on the convolution of two mod-

ular L-functions is given;

(ii) Let S̄ be the class of Dirichlet series with Euler product on Re(s) > 1 that can

be continued analytically to Re(s) = 1 with a possible pole at s = 1. For F,G ∈ S̄,

let F ⊗ G be the Euler product convolution of F and G. Assuming the existence of

analytic continuation for certain Dirichlet series and some other conditions, it is proved

that F ⊗G is non-vanishing on the line Re(s) = 1;

(iii) Let FN be the set of newforms of weight 2 and level N . For f ∈ FN , let

L(sym2 f, s) be the associated symmetric square L-function. Let s0 = σ0 + it0 with

1− 1
46
< σ0 < 1. It is proved that

Cs0,εN
1−ε ≤ #{f ∈ FN ; L(sym2 f, s0) 6= 0}

for prime N large enough. Here ε > 0 and Cs0,ε is a constant depending only on s0 and

ε.
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NOTATIONS

f(x)� g(x) or f(x) = O(g(x)) if there exists a constant C such that |f(x)| ≤ Cg(x)

f(x) ∼ g(x) as x→ +∞ if lim
x→+∞

f(x)

g(x)
= 1

ζ(s) : the Riemann zeta-function; page 2.

χ : a Dirichlet character; page 2.

g.c.d.(a, b) : the greatest common divisor of a and b; page 2.

χ0 : the trivial character; page 3.

Lχ(s) : the Dirichlet L-function associated to a character χ; page 3.

π(x) : number of primes ≤ x; page 3.

Γ(s) : the gamma-function; page 4.

θ(x) : the classical theta-function; page 4.

Λ(s) := π−
s
2 Γ
(
s
2

)
ζ(s); page 4.

H : the upper half-plane; page 6.

GL+
2 (R) : the multiplicative group of 2× 2 matrices with real entries and positive

determinant; page 6.

H
∗ := H

⋃
Q

⋃
{∞}; page 6.

“|k” : the stroke operator; page 6.

Γ = SL2(Z) : the multiplicative group of 2× 2 matrices with integer entries and

determinant 1; page 6.

qM := e
2πiz
M ; page 7.

âf (n) : the n-th Fourier coefficient of a cusp form f ; page 7.

Γ0(N) : the subgroup of Γ = SL2(Z) consists of matrices (aij)2×2 in which a21 is

divisible by N ; page 7.

Mk(N) : the space of modular forms of weight k and level N ; page 7.

Sk(N) : the space of cusp forms of weight k and level N ; page 7.

〈f, g〉 : the Petersson inner product of f and g in Sk(N); page 8.

D0(N) : a fundamental domain for Γ0(N); page 8.

e(z) := e2πiz; page 8.

Lf (s) : the L-function associated to a cusp form f ; page 8.

af (n) : the n-th normalized Fourier coefficient of a cusp form f ; page 8.
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WN : the Atkin-Lehner involution; page 8.

S+
k (N) : the (−1)

k
2 -eigenspace of WN in Sk(N); page 9.

S−k (N) : the (−1)
k
2

+1-eigenspace of WN in Sk(N); page 9.

Λf (s) :=
(

2π√
N

)−s
Γ(s)Lf (s); page 9.

Lf,χ(s) : the twisted L-function associated to f and χ; page 9.

a | b : a divides b; page 10.

a - b : a does not divide b; page 10.

Tp (p - N), Uq (q | N) : the Hecke operators; page 10.

d(n) : the number of positive divisors of n; page 11.

εp and ε̄p (p - N) : roots of the quadratic equation 1− af (p)x+ x2 = 0; page 11.

Sold
k (N) : the space of oldforms of weight k and level N ; page 12.

Snew
k (N) : the space of newforms of weight k and level N ; page 12.

FN : the set of normalized newforms of weight k and level N ; page 12.

∆(z) : the discriminant function; page 13.

E(z, s) : the Epstein zeta-function; page 17.

Θ(ω) = Θ(z, ω) : the theta-function; page 18.

f̂ : the Fourier transform of f ; page 18.

|A| : the determinant of a matrix A; page 19.

diag[a1, ..., an] : the diagonal matrix with entries a1, ..., an on its main diagonal;

page 19.

J : the Jacobian matrix; page 19.

ξ(z, s) :=
(
π
y

)−s
Γ(s)E(z, s); page 21.

δ(f, g) := yk−2f(z)g(z); page 23.

L(f × g, s) : the Rankin-Selberg convolution; pages 12 and 24.

L(f ⊗ g, s) : the modified Rankin-Selberg convolution; page 24.

ζN(s) : the Riemann zeta-function with the Euler p-factors corresponding to p | N
removed; page 24.

FN(z, s) := 1 +
∞∑
m=1

∞∑
n=−∞

g.c.d.(n,mN)=1

1

|mNz + n|2s
; page 26.

Γ∞ : the stabilizer of ∞ under the action of Γ on upper half-plane; page 26.

T : a set of representatives for right cosets of Γ∞ in Γ0(N); page 27.

µ(n) : the Möbius function; page 28.
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Φ(s) :=
(

2π√
N

)−2s

Γ(s)Γ(s+ k − 1)L(f ⊗ g, s)

=
(

2π√
N

)−2s

Γ(s)Γ(s+ k − 1)ζN(2s)L(f × g, s); page 30.

L(sym2 f, s) : the symmetric square L-function associated to a normalized eigenform

f ; page 35.

L∞(sym2, s) := π−
3
2
sΓ
(
s+1

2

)
Γ
(
s+k−1

2

)
Γ
(
s+k

2

)
; page 36.

Λ(sym2 f, s) := N sL∞(sym2, s)L(sym2 f, s); page 36.

S : the Selberg class; page 38.

aF (n) : the n-th coefficient of the Dirichlet series F (s); page 38.

bF (pk) : the pk-th coefficient in the p-factor of the Euler product of F (s); page 38.

S̄ : the class of Dirichlet series defined in Section 3.2; page 38.

F̄ (s) := F (s̄); page 39.

(F ⊗G)(s) : the Euler product convolution of F and G; page 39.

L(F ⊗G, s) : the L-convolution of F and G; page 54.

L(f, s) : the formal L-series attached to an arithmetic function f(n); page 55.

(f ∗ g)(n) : the Dirichlet convolution of two arithmetic functions f(n) and g(n);

page 55.∫
(c)
g(s)ds : the contour integral; page 61.

ωf := (4π)k−1

(k−2)!
〈f, f〉; page 68.

δmn : the Kronecker symbol; page 69.
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Chapter 1

Introduction and Statement of

Results

An L-function is, informally, a Dirichlet series
∑∞

n=1 ann
−s that extends analytically

to the whole complex plane and satisfies a certain symmetric relation (i.e., functional

equation). The study of these complex functions is intimately related to some im-

portant problems in arithmetic and geometry. In particular, the investigation of the

zeros of L-functions has played a significant role in the development of modern number

theory.

In the first section of this chapter we give a brief historical account of the non-

vanishing of L-functions and the close connection of these functions with classical

distribution problems in number theory. Through this we try to provide enough moti-

vation for the reader to follow the subject. Since our focus in this thesis is mostly on

the non-vanishing of L-functions associated to modular forms, a summary of the basic

definitions and results in the subject of modular forms is given in Section 1.2. Section

1.3 is devoted to a summary of the main results of this thesis.

1.1 Riemann Zeta-Function and Dirichlet L-Functions

The proof of infiniteness of primes goes back to Euclid’s time. However, it was Euler

who, for the first time, studied this discretely natured problem by continuous tools. To
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do this he introduced the zeta-function

ζ(s) =
∞∑
n=1

1

ns

for the real variable s > 1.

Euler observed that this function has a product representation in the form of

ζ(s) =
∏

p prime

(1− p−s)−1

for s > 1. Such a product is called an Euler product. By taking the logarithm of both

sides of this product, applying the expansion

− log(1− x) =
∞∑
k=1

xk

k
,

and using the divergence of the harmonic series, Euler showed that

lim
s→1+

(∑
p

1

ps
+
∑
p

∑
k≥2

1

kpks

)
= +∞.

He argued that since the second sum is convergent for s = 1, then

lim
s→1+

( ∑
p prime

1

ps

)
= +∞.

This proves the existence of an infinite number of primes, and proves further that the

series
∑

p p
−1 diverges.

After Euler it was Dirichlet who made major progress in this subject. His investi-

gation in the problem of distribution of primes in arithmetic progressions led him to

the notion of a character χ, which now bears his name.

A Dirichlet character χ (mod b), is a complex function defined on integers such

that for any m and n,

(i) χ(mn) = χ(m)χ(n);

(ii) χ(n+ b) = χ(n);

(iii) χ(n) 6= 0 if and only if g.c.d.(n, b) = 1.1

1g.c.d.(a, b) stands for the greatest common divisor of a and b.
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If χ(n) = 1 for any n with g.c.d.(n, b) = 1, then χ is called the trivial character (mod

b) and it is denoted by χ0.

Dirichlet realized that in order to study the distribution of primes in an arithmetic

progression with common ratio b, one needs to consider the following infinite series

Lχ(s) =
∞∑
n=1

χ(n)

ns

for s > 1. This is known as a Dirichlet L-function. It turned out that for any χ, Lχ(s)

has the following Euler product

Lχ(s) =
∏
p

(1− χ(p)p−s)−1,

and for any nontrivial character χ, Lχ(s) has a finite value at s = 1. By using these facts

about Lχ(s), Dirichlet proved that there are infinitely many primes in an arithmetic

progression a, a + b, a + 2b, · · · , when g.c.d.(a, b) = 1. The central idea in the proof

of Dirichlet’s Theorem is that for any character χ 6= χ0,

Lχ(1) 6= 0.

It is accurate to say that this is the first non-vanishing theorem of this type in the

history of number theory.

In 1859, twenty years after Dirichlet’s work, Riemann published a short and very

inspiring article about the problem of the distribution of prime numbers and its con-

nection with the zeta-function. More than half a century ago, Legendre and Gauss

independently conjectured that the number of primes in the interval [1, x], for large

x, behaves like
x

log x
. More precisely, if we define

π(x) =
∑
p≤x

p prime

1,

then

lim
x→∞

π(x) log x

x
= 1.

This is the celebrated Prime Number Theorem. Note that log here stands for natural

logarithm.

3



In his paper, unlike Euler and Dirichlet, Riemann considered ζ(s) as a complex

variable function. Today, this function in called the Riemann zeta-function. In this

seminal paper, known as Riemann’s Memoir, he outlined a project to prove the Prime

Number Theorem. Riemann first started with the definition of the gamma-function at

point
s

2
,

Γ
(s

2

)
=

∫ ∞
0

e−tt
s
2
−1dt.

Using the change of variable t 7→ πn2x, multiplying both sides by π−
s
2n−s and taking

sum over n’s, for Re(s) > 1, he arrived at

π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
0

(
x
s
2
−1

∞∑
n=1

e−πn
2x

)
dx. (1.1)

Then he utilized the classical theta-function

θ(x) =
∞∑

n=−∞

e−πn
2x.

It was proved by Jacobi that θ(x) has the following transformation property,

θ

(
1

x

)
= x

1
2 θ(x)

valid for x > 0.

Riemann applied this property of θ(x) in (1.1) to derive the following integral

representation for the zeta-function,

π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
1

ω(x)
(
x
s−2

2 + x−
s+1

2

)
dx+

1

s(s− 1)

where ω(x) =
θ(x)− 1

2
. From this he concluded that the zeta-function extends ana-

lytically to the whole complex plane, except for a simple pole at point s = 1. He also

proved that the zeta-function satisfies the following functional equation

Λ(s) = Λ(1− s) (1.2)

where

Λ(s) = π−
s
2 Γ
(s

2

)
ζ(s).

4



In the rest of his paper, Riemann made six conjectures, some about concrete proper-

ties of ζ(s), and others relating the zeta-function to the distribution of prime numbers.

By the late nineteenth century, four of these conjectures were proved, and as a result,

the proof of the Prime Number Theorem was established.

The Prime Number Theorem can be considered as a prototype example that de-

scribes the connection between the distribution problems arising in number theory and

the non-vanishing of various L-functions of number theory. One of the main steps in

the proof of the Prime Number Theorem by Hadamard and de la Vallée Poussin in

1896 was the fact that ζ(s) has no zeros on the line Re(s) = 1. It is not difficult to

prove that the Prime Number Theorem implies the non-vanishing of ζ(s) on the line

Re(s) = 1. The question arises whether the Prime Number Theorem can be proved

using just the fact that ζ(s) has no zeros on the line Re(s) = 1. This was answered

affirmatively around 1930 by the work of Wiener using Fourier analysis. So one can say

that the Prime Number Theorem is equivalent to the non-vanishing of the Riemann

zeta-function on the line Re(s) = 1.

The Riemann conjecture about the place of zeros of the Riemann zeta-function is in

fact much stronger. This deep conjecture, known as the Riemann Hypothesis, asserts

that apart from the trivial simple zeros at points s = 0,−2,−4, · · · , all the other zeros

of ζ(s) lie on the vertical line Re(s) = 1
2
. The proof of this conjecture would result

in the Prime Number Theorem with the best possible error term. More precisely,

assuming the Riemann Hypothesis, one can show that there is a constant C, such that

for large x,

|π(x)− x

log x
| ≤ Cx

1
2 log2 x.

The functional equation for Dirichlet L-functions was first given by Hurwitz in 1882,

although he confined himself to real characters. For a general non-trivial character χ,

one can prove that Lχ(s) has an analytic continuation to the whole complex plane, and

it satisfies a certain functional equation. A similar statement is true for Lχ0(s). The

only difference in this case is that Lχ0(s) has a simple pole at point s = 1.

5



1.2 Modular Forms

In this section we recall those basic definitions and fundamental results about modular

forms and related topics that we will use in this thesis. As we do not give any proofs

here, this section will be very concise. The interested reader can consult [11] or [21]

for details.

1.2.1 Basic Definitions

Let H denote the upper half-plane

H = {z = x+ iy : x ∈ R, y > 0}.

Let GL+
2 (R) be the multiplicative group of 2×2 matrices with real entries and positive

determinant. Then GL+
2 (R) acts on H as a group of analytic functions

γ : z 7→ az + b

cz + d
, γ =

(
a b

c d

)
∈ GL+

2 (R).

Let H∗ denote the union of H and the rational numbers Q together with a symbol ∞
(or i∞). The rational numbers together with ∞ are called cusps.

Let f be an analytic function on H and k a positive integer. For

γ =

(
a b

c d

)
∈ GL+

2 (R)

define the stroke operator “|k” as

(f |kγ)(z) = (detγ)
k
2 (cz + d)−kf

(
az + b

cz + d

)
.

Sometimes, we simply write f |γ for f |kγ. Note that (f |γ)|σ = f |γσ.

Let Γ = SL2(Z) be the multiplicative group of 2 × 2 matrices with integer entries

and determinant 1 and let Γ′ be a subgroup of finite index of it. Suppose f is an

analytic function on H such that f |γ = f for all γ ∈ Γ′. Since Γ′ has finite index,(
1 1

0 1

)M

=

(
1 M

0 1

)
∈ Γ′

6



for some positive integer M . Hence f(z + M) = f(z) for all z ∈ H. So f can be

expressed as a function of qM = e
2πiz
M , which we will denote by f̃ . More precisely, there

is a function f̃ such that

f(z) = f̃(qM).

The function f̃ is analytic in the punctured disc 0 < |qM | < 1. If f̃ extends to a

meromorphic (resp. an analytic) function at the origin, we say, by abuse of language,

that f is meromorphic (resp. analytic) at infinity. This means that f̃ has a Laurent

expansion in the punctured unit disc. Therefore, f has a Fourier expansion at infinity

in the form of

f(z) = f̃(qM) =
∞∑

n=−∞

âf (n)qnM , qM = e
2πiz
M

where âf (n) = 0 for all n ≤ n0 (n0 ∈ Z) if f is meromorphic at infinity; and âf (n) = 0

for all n < 0 if f is analytic at infinity. We say that f vanishes at infinity if âf (n) = 0

for all n ≤ 0.

Let σ ∈ Γ. Then σ−1Γ′σ also has finite index in Γ and (f |σ)|γ = f |σ for all

γ ∈ σ−1Γ′σ. So f |σ also has a Fourier expansion at infinity. We say that f is analytic

at the cusps if f |σ is analytic at infinity for all σ ∈ Γ. We say that f vanishes at the

cusps if f |σ vanishes at infinity for all σ ∈ Γ.

Now for N ≥ 1, let

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z); c ≡ 0 (mod N)

}
.

Note that Γ0(N) is of finite index in Γ.

A modular form of weight k and level N is an analytic function f on H such that

(i) f |γ = f for all γ ∈ Γ0(N);

(ii) f is analytic at the cusps.

Such a modular form is called a cusp form if it vanishes at the cusps.

The modular forms of weight k and level N form a finite dimensional vector space

Mk(N) and this has a subspace Sk(N) consisting of cusp forms. Note that since
(−1 0

0 −1

)
is the same as

(
1 0
0 1

)
in Γ0(N), (i) shows that Mk(N) = {0} if k is odd. So from now

on we assume that k is even.

7



Also, one can define an inner product called Petersson inner product on Sk(N) by

〈f, g〉 =

∫∫
D0(N)

f(z)g(z)yk
dxdy

y2

where D0(N) is a closed simply connected region in H with the following two properties:

(i) For any z ∈ H there is a γ ∈ Γ0(N) and a z1 ∈ D0(N) such that z = γ(z1);

(ii) If z1 = γ(z2) where z1, z2 ∈ D0(N) and γ ∈ Γ0(N), then z1 and z2 are on the

boundary of D0(N). D0(N) is called a fundamental domain for Γ0(N).

1.2.2 L-Function of a Cusp Form

Let f ∈ Sk(N). Since
(

1 1
0 1

)
∈ Γ0(N), the Fourier expansion of f at infinity is in the

form of

f(z) =
∞∑
n=1

âf (n)e(nz), e(z) = e2πiz.

Attached to f , we define the L-function associated to f by the Dirichlet series

Lf (s) =
∞∑
n=1

af (n)

ns

where af (n) =
âf (n)

n
k−1

2

for n = 1, 2, 3, · · · .

It can be shown that Lf (s) represents an analytic function for Re(s) > 1. This is

a consequence of the fact that for any ε > 0, af (n) = O(nε)2 (see Theorem 1.4).

Let

WN =

(
0 −1

N 0

)
.

This is not an element of Γ unless N = 1. However,

WNΓ0(N)W−1
N = Γ0(N).

Moreover, f |W 2
N = f . WN is called the Atkin-Lehner involution. Note that since

f 7→ f |WN defines a self-inverse linear operator on Sk(N), it decomposes the space of

2This means that there exists a constant C such that |af (n)| ≤ Cnε.
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cusp forms Sk(N) to two complementary subspaces corresponding to the eigenvalues

±1. Set

S+
k (N) =

{
f ∈ Sk(N); f |WN = (−1)

k
2 f
}
,

S−k (N) =
{
f ∈ Sk(N); f |WN = (−1)

k
2

+1f
}
,

and notice that Sk(N) = S+
k (N)⊕S−k (N). The following Theorem of Hecke guarantees

the analytic continuation of Lf (s) for f ∈ S±k (N).

Theorem 1.1 (Hecke) Let f ∈ S±k (N). Then Lf (s) extends to an entire function

and Λf (s) =
(

2π√
N

)−s
Γ(s)Lf (s) satisfies the following functional equation

Λf (s) = ±Λf (1− s).

The root number of Lf (s) is the sign appearing in the functional equation of Lf (s).

Corollary 1.2 Let f ∈ Sk(N). Then Lf (s) extends to an entire function.

Note Our definition of S+
k (N) and S−k (N) is slightly different from the conventional

ones that denote them as subspaces corresponding to the eigenvalues +1 and −1 for

operator WN , so for k
2

odd, our S±k (N) is the conventional S∓k (N). In our notation

S±k (N) is the set of cusp forms whose L-functions have root number ±1, respectively.

Let χ be a Dirichlet character (mod q). The twisted L-function associated to f ∈
Sk(N) and χ is defined by the absolutely convergent series

Lf,χ(s) =
∞∑
n=1

af (n)χ(n)

ns

for Re(s) > 1. One can show that if χ is primitive3, then

fχ(z) =
∞∑
n=1

af (n)χ(n)e2πinz

is a cusp form of weight k and level q2N . So in this case, the twisted L-function is the

same as the L-function associated to the cusp form fχ, and hence it has an analytic

continuation to the whole complex plane.

3This means that the period of χ is exactly q.
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1.2.3 Hecke Operators

Let f ∈ Mk(N). Let p and q be primes such that p - N and q | N .4 The Hecke

operators Tp and Uq are defined by

f | Tp = p
k
2
−1

[
f |

(
p 0

0 1

)
+

p−1∑
e=0

f |

(
1 e

0 p

)]
,

f | Uq = q
k
2
−1

[
q−1∑
e=0

f |

(
1 e

0 q

)]
.

We can show that f | Tp, f | Uq are also modular forms of weight k and level N , and

furthermore they are cusp forms if f is a cusp form.

Let f ∈ Sk(N). We will say that f is an eigenform if f is an eigenvector for all

the Hecke operators {Tp (p - N), Uq (q | N)}. The following theorem gives the main

property of eigenforms.

Theorem 1.3 (Hecke) The following conditions are equivalent.

(i) f is an eigenform and af (1) = 1.

(ii) Coefficients af (n) satisfy the following three properties:

(a) They are multiplicative, i.e., if g.c.d.(m,n) = 1, then af (mn) = af (m)af (n);

(b) For q | N , af (q
l) = af (q)

l;

(c) For p - N , af (p
l) = af (p)af (p

l−1)− af (pl−2).

(iii) Lf (s) has a product of the form

Lf (s) =
∏
q|N

(
1− af (q)q−s

)−1
∏
p-N

(
1− af (p)p−s + p−2s

)−1
,

which converges absolutely for Re(s) > 1.

We call the product given in part (iii) of the above theorem an Euler product. Also

any f satisfying the above equivalent conditions is called a normalized eigenform. It

can be proved that if f is an eigenform, then af (1) 6= 0. So we can always assume that

an eigenform f is normalized.

4Here a | b means that a is a divisor of b and a - b means that a is not a divisor of b.
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The coefficients of modular forms satisfy some important inequalities. The following

statement, known as the Ramanujan-Petersson Conjecture, gives the best possible

bounds for the coefficients of cusp forms.

Theorem 1.4 (Deligne) (i) If f is a normalized eigenform, then

|af (n)| ≤ d(n)

where d(n) is the number of the divisors of n.

(ii) If f is a cusp form, then for any ε > 0,

af (n)� nε.5

Now suppose f is an eigenform. From the above inequality it follows that if p - N ,

then af (p) can be written in the form of

af (p) = εp + ε̄p

where εp ∈ C and |εp| = 1. In fact, εp and ε̄p are the roots of the quadratic equation

1− af (p)x+ x2 = 0.

Corollary 1.5 If f is a normalized eigenform, then its L-function has the following

Euler product, valid for Re(s) > 1,

Lf (s) =
∏
p|N

(1− af (p)p−s)−1
∏
p-N

(1− εpp−s)−1(1− ε̄pp−s)−1.

Inspired by the above theorems we may think of finding a basis for Sk(N) consisting

of eigenforms for all the operators {Tp (p - N), Uq (q | N), WN}. We can show that

there exists a basis for Sk(N) consisting of eigenforms for all the operators {Tp (p -

N)} and the operator WN (see [5], Lemma 27). The existence of such a basis is the

consequence of the fact that {Tp (p - N), WN} form a commuting family of Hermitian

linear operators (with respect to the Petersson inner product) and therefore from a

theorem of linear algebra (see [8], p. 207, Theorem 8) the space of cusp forms is

diagonalizable under these operators. Unfortunately the operators {Uq (q | N)} are not

5af (n)� nε means that there exists a constant C > 0 such that |af (n)| ≤ Cnε.
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Hermitian for Sk(N) and we can not diagonalize Sk(N) with respect to the operators

{Tp (p - N), Uq (q | N), WN}. However, we may find such a basis for a certain subspace

of Sk(N).

It can be proved that the Fourier coefficient af (n) of a normalized eigenform f is

real. This is a consequence of the fact that the operators {Tp (p - N)} are Hermitian,

and the fact that the coefficients af (q) (q | N) are real (see [5], p. 147, Theorem 3).

1.2.4 Oldforms and Newforms

In [5] Atkin and Lehner constructed a subspace of Sk(N) that is diagonalizable under

the operators {Tp (p - N), Uq (q | N), WN}. More precisely, they showed that there

exists a subspace of Sk(N) whose eigenspaces with respect to the Hecke operators

{Tp (p - N)} are one dimensional. We call such a property, for a subspace of Sk(N),

“multiplicity one”. Now since the operators {Uq (q | N), WN} commute with the

operators {Tp (p - N)}, an eigenform for the operators {Tp (p - N)} is an eigenform for

the operators {Uq (q | N), WN} too.

Let N ′ | N (N ′ 6= N) and suppose that the {gi} is a basis consisting of eigenforms

for the operators {Tp (p - N ′)}. It can be proved that if d is any divisor of N
N ′

then

gi(dz) ∈ Sk(N). Set

Sold
k (N) = span

{
gi(dz) : for any N ′ | N (N ′ 6= N), d | N

N ′

}
.

We call Sold
k (N) the space of oldforms. Its orthogonal complement under the Peters-

son inner product is denoted by Snew
k (N) and the eigenforms in this space are called

newforms. So we have

Sk(N) = Sold
k (N)⊕ Snew

k (N).

Since the space of newforms has multiplicity one, the set of normalized newforms of

weight k and level N is uniquely determined. We denote it by FN . From the above

discussion it is clear that if f ∈ FN , Lf (s) satisfies a functional equation and has an

Euler product on the half-plane Re(s) > 1.
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1.3 This Thesis

The second chapter of this thesis gives a detailed exposition of Rankin’s classical work

on the convolution of two modular L-functions. For the modular L-functions Lf (s) =∑∞
n=1 af (n)n−s and Lg(s) =

∑∞
n=1 ag(n)n−s, let

L(f × g, s) =
∞∑
n=1

af (n)ag(n)

ns
.

This is called the Rankin-Selberg convolution of Lf (s) and Lg(s). In [19] Rankin estab-

lished the analytic continuation and the functional equation of L(f × g, s). A detailed

proof of Rankin’s Theorem is given in Chapter 2 (see Theorem 2.12).

Rankin’s Theorem has numerous number theoretic applications. In [18], Rankin

used this theorem to prove the non-vanishing of the modular L-function associated to

the discriminant function

∆(z) = e2πiz

∞∏
n=1

(1− e2πinz)24

on the line Re(s) = 1. In fact, Rankin’s argument establishes the non-vanishing of

L-functions associated to eigenforms for the points on the line Re(s) = 1, except the

point s = 1. In [17], Ogg proved that the same result is true for s = 1. Moreover, he

showed that if 〈f, g〉 = 0, then L(f × g, 1) 6= 0.

In Chapter 3, inspired by Ogg’s theorem on non-vanishing of Rankin-Selberg con-

volutions at the point s = 1, we prove two general non-vanishing theorems for the

convolution of two general Dirichlet series. One of the main themes of Chapter 3 is

that the existence of analytic continuation for certain Dirichlet series is closely related

to the problem of non-vanishing of L-functions on the line Re(s) = 1. To describe our

results, we need the following four definitions.

(i) Let S̄ denote the class of Dirichlet series F (s) =
∑∞

n=1 aF (n)n−s with the following

properties:

(a) For Re(s) > 1, F (s) has the Euler product

F (s) =
∏
p

exp

(
∞∑
k=1

bF (pk)

pks

)
;
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(b) For any ε > 0, aF (n) = O(nε);

(c) F (s) has an analytic continuation to the line Re(s) = 1, except for a possible

pole at s = 1.

(ii) For F ∈ S̄, we define

F̄ (s) = F (s̄) =
∞∑
n=1

aF (n)

ns
.

(iii) For F, G ∈ S̄, the Euler product convolution of F and G is defined as

(F ⊗G)(s) =
∏
p

exp

(
∞∑
k=1

kbF (pk)bG(pk)

pks

)
.

(iv) For F ∈ S̄ and σ0 ≤ 1, we say F is ⊗-simple in Re(s) > σ0 (resp. Re(s) ≥ σ0),

if F ⊗ F has an analytic continuation to Re(s) > σ0 (resp. Re(s) ≥ σ0), except for a

possible simple pole at s = 1.

Section 3.3 deals with the non-vanishing of the Euler product convolution F ⊗ G
on the line Re(s) = 1 (s 6= 1). We prove the following.

Theorem 3.10 Let F, G ∈ S̄ be ⊗-simple in Re(s) ≥ 1 and let t 6= 0. Then

(i) (F ⊗ F )(1 + it) 6= 0.

(ii) If F = F̄ , G = Ḡ, and if F ⊗ G has an analytic continuation to the line

Re(s) = 1, then (F ⊗G)(1 + it) 6= 0.

In Section 3.4 we derive a similar non-vanishing result for s = 1. We prove the

following.

Theorem 3.15 Let σ0 < 1, and assume the following:

(i) F ⊗ Fand G ⊗ G can be extended analytically to the half-plane Re(s) > σ0,

except for a (possible) simple pole at s = 1;

(ii) F ⊗G has an analytic continuation to the half-plane Re(s) > σ0;

(iii) At least one of F ⊗F , G⊗G, or F ⊗G has zeros in the half-plane Re(s) > σ0.

Then (F ⊗G)(1) 6= 0.

We will see that the non-vanishing of various L-functions of number theory will be

simple consequences of these theorems. In particular, these results establish the non-

vanishing of Lf (s), Lf,χ(s) and L(f×g, s) on the line Re(s) = 1. We also observe that,
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for a non-real character χ, the non-vanishing of Lχ(s) on the line Re(s) = 1 (s 6= 1)

does not follow from Theorem 3.10. In order to deal with this problem, in Section 3.5,

inspired by a theorem of Ingham [9], we prove a general non-vanishing theorem for the

Dirichlet series with completely multiplicative coefficients. More precisely, we prove

the following.

Theorem 3.22 Let F , G ∈ S̄ be two Dirichlet series with completely multiplicative

coefficients. Also assume the following:

(i) F and G are ⊗-simple in Re(s) ≥ 1
2
;

(ii) F ⊗G has an analytic continuation to Re(s) ≥ 1
2
;

(iii) (F ⊗G)⊗ (F ⊗G) is analytic for Re(s) > 1 and has a pole at s = 1.

Then, (F ⊗G)(1 + it) 6= 0 for all t.

Note that this theorem will imply the non-vanishing of Lχ(s) on the line Re(s) = 1

(s 6= 1).

Chapter 4 is related to the symmetric square L-function associated to a newform f

of level N defined by

L(sym2 f, s) =
ζN(2s)

ζN(s)
L(f × f, s).

The non-vanishing of L(sym2 f, s) inside the critical strip (i.e., the strip 0 ≤ Re(s) ≤ 1)

is the main focus of this chapter. More specifically, we are interested in the following

problem.

Problem Let s0 be a point inside the critical strip and FN be the set of normalized

newforms of weight k and level N . Then, what can we say about the

#
{
f ∈ FN : L(sym2 f, s0) 6= 0

}
for large N?

This is a challenging problem. The Generalized Riemann Hypothesis predicts that for

all f ∈ FN and 1
2
< Re(s0) < 1, L(sym2 f, s0) 6= 0. However, we are very far from

a proof of this conjecture. Probably the most interesting known result related to the

above problem is a result of Kohnen and Sengupta [12]. They prove that for any given

s0 inside the critical strip, we can find an integer k0 such that, for all k > k0, there

exists a newform f for which L(sym2 f, s0) 6= 0. This is a nice result, however, it does

15



not directly address the above problem, since in our case the weight is fixed while

Kohnen and Sengupta vary the weights.

In the final chapter of this thesis, we prove a partial result related to the above

mentioned problem. More precisely, for a fixed point s0 inside the strip 1 − 1
46

<

Re(s) < 1, we find a lower bound in terms of prime N for the number of weight 2

newforms f for which L(sym2 f, s0) 6= 0. The main step in the proof of such a result is

establishing an upper bound for the mean values of the symmetric square L-functions

in the critical strip.

¿From now on let FN be the set of newforms of weight 2 and prime level N . In

Section 4.4, we derive an upper bound for the following mean square of symmetric

square L-functions ∑
f∈FN

|L(sym2 f, s0)|2.

In [10], Iwaniec and Michel proved such an upper bound in the case of Re(s0) = 1
2
. We

closely follow their approach, and show that a similar result is true for a point inside

the critical strip. We prove the following.

Theorem 4.1 Let s0 be a point in the strip 3
4
≤ σ0 = Re(s0) ≤ 1. Then,∑

f∈FN

|L(sym2 f, s0)|2 � |s0|9+ 6
εN1+ε

for any ε > 0. The implied constant depends only on ε.

In Section 4.5, we combine this theorem with a known result about the values of

the symmetric square L-functions on average to find a lower bound in terms of N for

the number of newforms f for which L(sym2 f, s0). We have the following.

Theorem 4.10 Let N be a prime number and let s0 = σ0 + it0 with 1− 1
46
< σ0 < 1.

Then for any ε > 0, there are positive constants Cs0,ε and C ′s0,ε (depending only on s0

and ε), such that for any prime N > C ′s0,ε, there exist at least Cs0,εN
1−ε newforms f

of weight 2 and level N for which L(sym2 f, s0) 6= 0.

Finally, the following will be a simple corollary of our result.

Corollary 4.11 For any s0 = σ0 + it0 with 1− 1
46
< σ0 < 1, there are infinitely many

symmetric square L-functions associated to newforms f such that L(sym2 f, s0) 6= 0.
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Chapter 2

Rankin-Selberg Convolution

In 1939 Rankin published two papers about modular forms and the behavior of their

coefficients ([18], [19]). These papers have played a very influential role in the history

of modular forms. In his second paper, he introduced the notion of the convolution of

two L-functions associated to modular forms, known as Rankin-Selberg convolution.

The main goal of this chapter is to give an exposition of Rankin’s work. Section 2.2

is devoted to this. In order to study the Rankin-Selberg convolution, we need some

basic properties of the Epstein zeta-function. We will discuss these properties in the

first section. Also in the last section we will introduce the symmetric square L-function

associated to an eigenform, as we need it in the final chapter of this thesis.

2.1 Epstein Zeta-Function

In this section we introduce the Epstein zeta-function and will establish its basic prop-

erties. We will use these results in the next section. Our account will be brief.

Definition 2.1 For any z = x+ iy ∈ H and for s = σ+ it ∈ C, we define the Epstein

zeta-function by

E(z, s) =
∑
m,n

′ 1

|mz + n|2s

where the dash means that m and n run through all integer pairs except (0, 0).

17



It can be proved that for any z ∈ H, the above double series is absolutely and

uniformly convergent in the half-plane Re(s) > 1, and therefore E(z, s) is an analytic

function of s on this half-plane (see [4], p. 7).

Our goal here is to prove that the Epstein zeta-function has an analytic continuation

and it satisfies a functional equation. Both of these statements are consequences of the

transformation property of the following theta-function.

Definition 2.2 For ω > 0 and z = x + iy ∈ H, the theta-function Θ(ω) is defined by

the following infinite sum

Θ(ω) = Θ(z, ω) =
∑
m,n

′
exp

{
−πω
y
|mz + n|2

}
.

Here dash has the same meaning as in the definition of E(z, s).

The first target here is to establish the transformation property of Θ(ω). To do

this, first we recall some facts about the Fourier transform. For simplicity, we set

e(z) = e2πiz.

Definition 2.3 Let f : Rn → C be bounded, smooth (i.e., all partial derivatives exist

and are continuous), and rapidly decreasing (i.e., for any N , |x|Nf(x) tends to zero

when |x| goes to infinity). The Fourier transform of f is defined by

f̂(y) =

∫
R
n
e(−xty)f(x)dx.

Here, x = (x1, ..., xn)t, y = (y1, ..., yn)t, xty =
n∑
j=1

xjyj, |x| = (xtx)
1
2 , dx =

n∏
j=1

dxj

and “t” stands for transposition.

It can be proved that for f(x) = e−πxtx we have f̂ = f (see [11], p. 83). Recall that

throughout this chapter ω is a positive real number.

Lemma 2.4 Let A be a real symmetric matrix of size n with positive eigenvalues, and

let

g(x) = e

(
i

2
ωxtAx

)
= e−πωxtAx.
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Then we have

ĝ(y) = |A|−
1
2

(
1

ω

)n
2

e

(
i

2ω
ytA−1y

)
= |A|−

1
2

(
1

ω

)n
2

e−
π
ω

ytA−1y.

Here, |A| is the determinant of A.

Proof By the principal axis theorem (see [8], p. 323, Theorem 4), there exists an

orthogonal matrix U such that

A = U tDU

where D = diag[λ1, ..., λn] is a diagonal matrix and λi’s are the eigenvalues of A. Let

B = diag[
√
λ1, ...,

√
λn]U = (bij)n×n.

B is invertible and A = BtB. Consider the change of variable u = ω
1
2Bx, and let

v = ω−
1
2 (Bt)−1y. We have the following

utu = ωxtAx, vtv =
1

ω
ytA−1y, xty = utv.

Also for the Jacobian matrix J we have

J =

(
∂ui
∂xj

)
n×n

=
(
ω

1
2 bij

)
n×n

= ω
1
2B,

and therefore

du = |J |dx = ω
n
2 |B|dx = ω

n
2 |A|

1
2dx.

Applying this change of variable in the Fourier transform of g yields

ĝ(y) =

∫
R
n
e(−xty)e−πωxtAxdx

= |A|−
1
2

(
1

ω

)n
2
∫
R
n
e(−utv)e−πutudu

= |A|−
1
2

(
1

ω

)n
2

f̂(v)

= |A|−
1
2

(
1

ω

)n
2

e−πvtv

= |A|−
1
2

(
1

ω

)n
2

e−
π
ω

ytA−1y.

The proof is complete. �
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Proposition 2.5 The theta-function Θ(ω) satisfies the following transformation prop-

erty

1 + Θ(ω) =
1

ω

(
1 + Θ

(
1

ω

))
.

Proof In Lemma 2.4 put

A =

(
|z|2
y

x
y

x
y

1
y

)
where z = x+ iy ∈ H. A has positive eigenvalues and we have

A−1 =

(
1
y
−x
y

−x
y

|z|2
y

)
, n = 2, |A| = 1,

and so

g(x) = e−πωxtAx = e−
πω
y
|x1z+x2|2 ,

ĝ(y) =
1

ω
e−

π
ω

ytA−1y =
1

ω
e−

π
yω
|y1−y2z|2 .

By applying the Poisson summation formula, i.e.,∑
m∈Z

2

g(m) =
∑

m∈Z
2

ĝ(m),

(see [11], p. 83), we have∑
m,n

e−
πω
y
|mz+n|2 =

1

ω

∑
m,n

e−
π
yω
|m−nz|2

or

1 + Θ(ω) =
1

ω

(
1 + Θ

(
1

ω

))
.

The proof is complete. �

In the sequel, we also need to know how Θ(ω) behaves at infinity. It can be proved

that Θ(ω) has exponential decay. More precisely, by approximation methods, one can

show that for −1 ≤ Re(z) ≤ 1,

Θ(ω)�
(

1 + ω−1 + y
1
2ω−

1
2 + y−

1
2ω−

1
2

)(
e−

πyω
2 + e−

πω
2y

)
. (2.1)

(See [19], p. 359, Lemma 3).

Now we are ready to prove the main result of this section.
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Proposition 2.6 (i) The Epstein zeta-function can be analytically continued to the

whole complex plane, except for a simple pole at s = 1 with residue
π

y
.

(ii) Put

ξ(z, s) =

(
π

y

)−s
Γ(s)E(z, s).

We have the following integral representation for ξ(z, s)

ξ(z, s) =

∫ ∞
1

Θ(ω)(ωs−1 + ω−s)dω +
1

s(s− 1)

and so, ξ(z, s) is analytic everywhere, except for simple poles at s = 0, 1 with residue

1.

(iii) ξ(z, s) is unchanged under the replacing of s by 1− s. This means that

ξ(z, s) = ξ(z, 1− s).

In other words, the Epstein zeta-function satisfies the following functional equation(
π

y

)−s
Γ(s)E(z, s) =

(
π

y

)s−1

Γ(1− s)E(z, 1− s).

Proof For Re(s) > 0, we have

Γ(s) =

∫ ∞
0

e−uus−1du.

We apply the change of variable u 7→ π
y
|mz + n|2ω, to get

Γ(s) =

(
π

y

)s
|mz + n|2s

∫ ∞
0

e−
πω
y
|mz+n|2ωs−1dω,

or (
π

y

)−s
|mz + n|−2sΓ(s) =

∫ ∞
0

e−
πω
y
|mz+n|2ωs−1dω.
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This implies

ξ(z, s) =

(
π

y

)−s
Γ(s)E(z, s)

=

(
π

y

)−s
Γ(s)

∑
m,n

′ 1

|mz + n|2s

=
∑
m,n

′
(
π

y

)−s
Γ(s)|mz + n|−2s

=
∑
m,n

′
∫ ∞

0

exp

{
−πω
y
|mz + n|2

}
ωs−1dω.

Now note that the inequality (2.1) allows us to interchange the order of summation

and integration. So

ξ(z, s) =

∫ ∞
0

∑
m,n

′
exp

{
−πω
y
|mz + n|2

}
ωs−1dω

=

∫ ∞
0

Θ(ω)ωs−1dω

=

∫ 1

0

Θ(ω)ωs−1dω +

∫ ∞
1

Θ(ω)ωs−1dω.

Changing variable u 7→ 1
ω

and applying the transformation property of Proposition

2.5 yield

ξ(z, s) =

∫ ∞
1

Θ(ω)ωs−1dω +

∫ 1

∞
Θ

(
1

u

)(
1

u

)s−1(
− 1

u2

)
du

=

∫ ∞
1

Θ(ω)ωs−1dω +

∫ ∞
1

{ω (1 + Θ(ω))− 1}
(

1

ω

)s+1

dω

=

∫ ∞
1

Θ(ω)ωs−1dω +

∫ ∞
1

Θ(ω)ω−sdω +

∫ ∞
1

(
ω−s − ω−s−1

)
dω

=

∫ ∞
1

Θ(ω)
(
ωs−1 + ω−s

)
dω +

1

s(s− 1)
. (2.2)

Note that the inequality (2.1) also shows that∫ ∞
1

∣∣Θ(ω)(ωs−1 + ω−s)
∣∣ dω
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�
∫ ∞

1

(
1 + ω−1 + y

1
2ω−

1
2 + y−

1
2ω−

1
2

)(
e−

πyω
2 + e−

πω
2y

) (
ωσ−1 + ω−σ

)
dω.

After expanding the right-hand side, we come to a finite sum of integrals in the form

of ∫ ∞
1

e−aωωbdω

where a ∈ R+ and b ∈ R. Since these integrals are convergent, the first summand on

the right-hand side of (2.2) is an entire function of s. This proves (ii).

The identity (2.2) also proves (iii), because the right-hand side of (2.2) is invariant

under the replacing of s with 1− s.

To prove (i), note that by (ii) the only possible poles for E(z, s) are s = 0, 1. At

s = 0 since both Γ(s) and ξ(z, s) have simple poles with residue 1, E(z, s) is analytic

and E(z, 0) = 1. At s = 1, Γ(s) has a value of 1 and ξ(z, s) has a simple pole with

residue 1. Therefore E(z, s) has a simple pole with residue
π

y
.

This completes the proof. �

2.2 Rankin-Selberg Convolution

Let z = x + iy be a point in the upper half-plane H, and let s = σ + it be a point in

the complex plane C. Let

f(z) =
∞∑
n=1

âf (n)e2πinz

and

g(z) =
∞∑
n=1

âg(n)e2πinz

be cusp forms of weight k and level N . We set

δ(f, g) = yk−2f(z)g(z).

Recall that for Re(s) > 1, the L-functions attached to f and g are defined by

Lf (s) =
∞∑
n=1

af (n)

ns
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and

Lg(s) =
∞∑
n=1

ag(n)

ns

where

af (n) =
âf (n)

n
k−1

2

, ag(n) =
âg(n)

n
k−1

2

for n = 1, 2, 3, · · · .

Definition 2.7 The Rankin-Selberg convolution of Lf (s) and Lg(s) is defined by

L(f × g, s) =
∞∑
n=1

af (n)ag(n)

ns
.

The modified Rankin-Selberg convolution of Lf (s) and Lg(s) is defined by

L(f ⊗ g, s) = ζN(2s)L(f × g, s) = ζN(2s)
∞∑
n=1

af (n)ag(n)

ns

where ζN(s) =
∞∑
n=1

g.c.d.(n,N)=1

1

ns
=
∏
p-N

(
1− 1

ps

)−1

is the Riemann zeta-function with the

Euler p-factors corresponding to p | N removed.

The main goal of this section is to study the analytic properties of L(f × g, s). We

will see that the analytic continuation and the functional equation of the Epstein zeta-

function E(z, s) will result in the analytic continuation and the functional equation for

the Rankin-Selberg convolution L(f × g, s).

In Proposition 2.9 we will relate the Rankin-Selberg convolution L(f × g, s) to a

double integral on a certain region of the upper half-plane. To do this we need the

following lemma.

Lemma 2.8 For any fixed y > 0,∫ 1
2

− 1
2

f(z)g(z)dx =
∞∑
n=1

âf (n)âg(n)e−4πny.
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Proof We have∫ 1
2

− 1
2

f(z)g(z)dx =

∫ 1
2

− 1
2

(
∞∑
m=1

âf (m)e2πim(x+iy)

∞∑
n=1

âg(n)e2πin(x+iy)

)
dx

=

∫ 1
2

− 1
2

(
∞∑
m=1

∞∑
n=1

âf (m)âg(n)e2πi(m−n)xe−2π(m+n)y

)
dx.

Interchanging the order of summation and integration yields∫ 1
2

− 1
2

f(z)g(z)dx =
∞∑
m=1

∞∑
n=1

(
âf (m)âg(n)e−2π(m+n)y

∫ 1
2

− 1
2

e2πi(m−n)xdx

)

=
∞∑
n=1

âf (n)âg(n)e−4πny.

The proof is complete. �

Proposition 2.9 For Re(s) > 1 we have the following integral representation for the

Rankin-Selberg convolution L(f × g, s)

(4π)−s−k+1Γ(s+ k − 1)L(f × g, s) =

∫∫
S

ys+k−2f(z)g(z)dxdy

=

∫∫
S

ysδ(f, g)dxdy

where S is the strip |x| ≤ 1
2

and y > 0.

Proof We have

(4π)−s−k+1Γ(s+ k − 1)L(f × g, s) = (4π)−s−k+1Γ(s+ k − 1)
∞∑
n=1

af (n)ag(n)

ns

=
∞∑
n=1

{
âf (n)âg(n)

nk−1

(4π)−s−k+1

ns
Γ(s+ k − 1)

}

=
∞∑
n=1

{
âf (n)âg(n)(4πn)−s−k+1Γ(s+ k − 1)

}
.

Note that by the change of variable t 7→ 4πny, Γ(s+ k − 1) can be written as

Γ(s+ k − 1) = (4πn)s+k−1

∫ ∞
0

e−4πnyys+k−2dy.
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So

(4π)−s−k+1Γ(s+ k − 1)L(f × g, s) =
∞∑
n=1

{
âf (n)âg(n)

∫ ∞
0

e−4πnyys+k−2

}
dy

=

∫ ∞
0

ys+k−2

{
∞∑
n=1

âf (n)âg(n)e−4πny

}
dy.

Now by applying Lemma 2.8 we get

(4π)−s−k+1Γ(s+ k − 1)L(f × g, s) =

∫ ∞
0

ys+k−2

{∫ 1
2

− 1
2

f(z)g(z)dx

}
dy

=

∫∫
S

ys+k−2f(z)g(z)dxdy

=

∫∫
S

ysδ(f, g)dxdy.

This completes the proof. �

Our next step is to rewrite the double integral in the statement of the previous

proposition as a new integral on a fundamental domain for Γ0(N).

Lemma 2.10 We have∫∫
S

ysδ(f, g)dxdy =

∫∫
D0(N)

ysδ(f, g)FN(z, s)dxdy

where

FN(z, s) = 1 +
∞∑
m=1

∞∑
n=−∞

g.c.d.(n,mN)=1

1

|mNz + n|2s

and D0(N) is a fundamental domain for Γ0(N).

Proof Let

Γ∞ = {γ ∈ Γ : γ∞ =∞} =

{(
1 b

0 1

)
: b ∈ Z

}
.

Γ∞ is a subgroup of Γ and it is clear that the strip S = {(x, y) : |x| ≤ 1
2
, y > 0} is a

fundamental domain for Γ∞. For any two matrices γ=
(
a b
c d

)
and γ′=

(
a′ b′

c′ d′

)
in GL2(Z),
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the right cosets Γ∞γ and Γ∞γ
′ are equal if and only if (c, d) = ±(c′, d′). So the right

cosets of Γ∞ in Γ0(N) are in one to one correspondence with the pairs (c, d). Therefore

we can choose a set of representative T for the right cosets of Γ∞ in Γ0(N) as follows:

T = {(0, 1)} ∪ {(c, d) : c > 0, N |c, (c, d) = 1} .

We claim that for any pair (c, d) in T , there is a unique transformation

γc,d : z1 → z =
az1 + b

cz1 + d

that maps D0(N) into S. This is true for the pair (0, 1). For other pairs in T , note

that since ∞ ∈ D0(N), ∣∣∣a
c

∣∣∣ = |γc,d(∞)| ≤ 1

2
.

This shows that c ≥ 2; and since ad− bc = 1, equality holds only if c = 2, a = ±1. We

consider two cases.

If c > 2, then there is exactly one solution in a, b of the equation ad − bc = 1 for

which
∣∣∣a
c

∣∣∣ < 1

2
. Since γc,dD0(N) has the unique cusp

a

c
in S, and this cusp is not on

either of the lines |x| = 1
2
, the whole of γc,dD0(N) lies in S.

If c = 2, then a = ±1. Suppose that, for example, γc,d takes ∞ to the cusp −1
2

and takes D0(N) into S. Then the transformation γc,d(z1) + 1 has the same c, d and

maps D0(N) outside S (touching the line x = 1
2
), and therefore corresponds to the

other solution. Hence exactly one of the transformations γc,d(z1) or γc,d(z1) + 1 has the

desired property. The claim is proved.

This shows that the strip S can be written as the disjoint union of γc,dD0(N)’s

S =
⋃

(c,d)∈T

γc,dD0(N).

Therefore, we have∫∫
S

ysδ(f, g)dxdy =
∑

(c,d)∈T

∫∫
γc,dD0(N)

ysδ(f, g)dxdy.
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Now let z1 = x1 + iy1. Changing variable z1 7→ z =
az1 + b

cz1 + d
yields

∫∫
S

ysδ(f, g)dxdy =
∑

(c,d)∈T

∫∫
D0(N)

(
y1

|cz1 + d|2

)s
δ(f, g)dx1dy1

=

∫∫
D0(N)

ys1δ(f, g)
∑

(c,d)∈T

1

|cz1 + d|2s

 dx1dy1.

By considering the definition of T in the last integral, we have

∫∫
S

ysδ(f, g)dxdy =

∫∫
D0(N)

ysδ(f, g)

1 +
∞∑
c=1
N|c

∞∑
d=−∞

g.c.d.(d,c)=1

1

|cz + d|2s

 dxdy

=

∫∫
D0(N)

ysδ(f, g)FN(z, s)dxdy.

The proof is complete. �

Now we will show that FN(z, s) has a representation in terms of the Epstein zeta-

function. First we recall the definition of the Möbius function.

The Möbius function µ(n) is defined by

µ(n) =


1 if n = 1

(−1)r if n = p1p2 · · · pr, pi 6= pj

0 otherwise.

Lemma 2.11 We have

2ζN(2s)FN(z, s) =
∑
d|N

µ(d)

d2s
E(
N

d
z, s).

Proof The idea is to evaluate the double sum

S =
∑
m,n

g.c.d.(n,N)=1

′ 1

|mNz + n|2s

in two different ways.
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On one hand we have

S = 2
∞∑
n=1

g.c.d.(n,N)=1

1

n2s
+

∞∑
m=−∞
m6=0

∞∑
n=−∞

g.c.d.(n,N)=1

1

|mNz + n|2s

= 2ζN(2s) + 2
∞∑
m=1

∞∑
n=−∞

1

|mNz + n|2s

= 2ζN(2s) + 2
∞∑
k=1

∞∑
m=1

∞∑
n=−∞

g.c.d.(n,m)=k

1

|mNz + n|2s
.

Note that since g.c.d.(n,N) = 1, then g.c.d.(n,m) = g.c.d.(n,mN). So

S = 2ζN(2s) + 2
∞∑
k=1

∞∑
m=1

∞∑
n=−∞

g.c.d.(n,mN)=k

1

|mNz + n|2s

= 2ζN(2s) + 2ζN(2s)
∞∑
m=1

∞∑
n=−∞

g.c.d.(n,mN)=1

1

|mNz + n|2s

= 2ζN(2s)FN(z, s).

On the other hand by applying the classical identity∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise

(see [15], Exercise 1.1.1), we have

S =
∑
m,n

′

 1

|mNz + n|2s
∑

d|g.c.d.(n,N)

µ(d)


=

∑
d|N

{
µ(d)

∑
m,n

′ 1

|mNz + n1d|2s

}

where n1 =
n

d
. So

S =
∑
d|N

{
µ(d)

d2s

∑
m,n1

′ 1

|mN
d
z + n1|2s

}

=
∑
d|N

{
µ(d)

d2s
E

(
N

d
z, s

)}
.
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This completes the proof. �

We are ready to prove the main result of this chapter.

Theorem 2.12 (Rankin) The Rankin-Selberg convolution L(f × g, s) has the follow-

ing properties:

(i) The series

L(f × g, s) =
∞∑
n=1

af (n)ag(n)

ns

is absolutely and uniformly convergent for Re(s) > 1.

(ii) L(f × g, s) has a meromorphic continuation to the whole complex plane.

(iii) L(f × g, s) is analytic at s = 1 if 〈f, g〉 = 0. Otherwise, it has a simple pole at

point s = 1 with the residue

r =
12(4π)k−1

N(k − 1)!
∏

p|N(1− 1
p
)

∫∫
D0(N)

δ(f, g)dxdy

=
12(4π)k−1

N(k − 1)!
∏

p|N(1− 1
p
)
〈f, g〉.

(iv) Let

L(f ⊗ g, s) = ζN(2s)L(f × g, s) = ζN(2s)
∞∑
n=1

af (n)ag(n)

ns

be the modified Rankin-Selberg convolution and for Re(s) > 1, let

Φ(s) =

(
2π√
N

)−2s

Γ(s)Γ(s+ k − 1)L(f ⊗ g, s)

=

(
2π√
N

)−2s

Γ(s)Γ(s+ k − 1)ζN(2s)L(f × g, s).

Then both L(f ⊗ g, s) and Φ(s) are entire functions if 〈f, g〉 = 0. Otherwise, they are

analytic everywhere except that L(f ⊗ g, s) has a simple pole at point s = 1 and Φ(s)

has simple poles at points s = 0 and 1.

(v) If N = 1, then the function Φ(s) is invariant under the replacing of s by 1− s,
i.e.,

Φ(s) = Φ(1− s).
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Proof (i) Suppose that σ = Re(s) ≥ 1 + δ > 1. By Deligne’s bound (see Theorem

1.4), we know that |af (n)|, |ag(n)| � nδ/4. So,

∞∑
n=1

∣∣∣∣∣af (n)ag(n)

ns

∣∣∣∣∣ �
∞∑
n=1

nδ/2

nσ

≤
∞∑
n=1

1

n1+δ/2

< +∞.

This completes the proof of (i).

(ii) & (iv) By Proposition 2.9 and Lemma 2.10, we have

Φ(s) =

(
2π√
N

)−2s

Γ(s)Γ(s+ k − 1)L(f ⊗ g, s)

=

(
2π√
N

)−2s

Γ(s)ζN(2s)(4π)s+k−1

∫∫
S

ysδ(f, g)dxdy

= (4π)k−1

(
N

π

)s
Γ(s)ζN(2s)

∫∫
D0(N)

ysδ(f, g)FN(z, s)dxdy.

Applying Lemma 2.11 in the previous integral yields

Φ(s) =
(4π)k−1

2

(
N

π

)s
Γ(s)

∫∫
D0(N)

ysδ(f, g)
∑
d|N

(
µ(d)

d2s
E

(
N

d
τ, s

))
dxdy

=
(4π)k−1

2

∫∫
D0(N)

δ(f, g)
∑
d|N

(
µ(d)

ds

(
Ny

dπ

)s
Γ(s)E

(
N

d
τ, s

))
dxdy.

Finally by (2.2), we obtain

Φ(s) =
(4π)k−1

2

∫∫
D0(N)

δ(f, g)
∑
d|N

(
µ(d)

ds
ξ

(
N

d
z, s

))
dxdy

=
(4π)k−1

2

∑
d|N

µ(d)

ds

∫∫
D0(N)

(
δ(f, g)

∫ ∞
1

Θ(ω)(ωs−1 + ω−s)

)
dxdydω

+
(4π)k−1

2s(s− 1)

∑
d|N

µ(d)

ds

∫∫
D0(N)

δ(f, g)dxdy. (2.3)

31



Note that by (2.1), the integral in the first summand of the right-hand side of (2.3) is

dominated by a finite sum of integrals of the form∫∫
D0(N)

yλδ(f, g)

(∫ ∞
1

e−aωωbdω

)
dxdy

for λ ∈ R. These integrals are all convergent, because f and g vanish at all the cusps

of D0(N). Therefore the first summand in 2.3 is an entire function of s. This proves

(ii) and (iv).

(iii) If we multiply both sides of (2.3) by s− 1 and then let s→ 1+, we get

lim
s→1+

(s− 1)

(
2π√
N

)−2s

Γ(s)Γ(s+ k − 1)ζN(2s)L(f × g, s)

=
(4π)k−1

2

∑
d|N

µ(d)

d

∫∫
D0(N)

δ(f, g)dxdy

and therefore

r = Res(L(f × g, s), 1)

=
12(4π)k−1

N(k − 1)!
∏

p|N(1 + 1
p
)

∫∫
D0(N)

δ(f, g)dxdy.

This completes the proof of part (iii).

(v) Let N = 1. We can simplify (2.3) to

Φ(s) =
(4π)k−1

2

∫∫
D0(1)

(
δ(f, g)

∫ ∞
1

Θ(ω)(ωs−1 + ω−s)

)
dxdydω

+
(4π)k−1

2s(s− 1)

∫∫
D0(1)

δ(f, g)dxdy.

At a glance we realize that the right-hand side of this equality is invariant under the

replacing of s with 1− s. Therefore

Φ(s) = Φ(1− s).

In other words, L(f × g, s) satisfies the following functional equation

(2π)−2sΓ(s)Γ(s+ k − 1)ζN(2s)L(f × g, s)

= (2π)2s−2Γ(1− s)Γ(k − s)ζN(2− 2s)L(f × g, 1− s).

The proof of the theorem is complete. �
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In the rest of this section, we will study the Euler product of the Rankin-Selberg

convolution of two modular L-functions. Let f(z) =
∑∞

n=1 âf (n)e2πinz be a cusp form

for Γ0(N), and let Lf (s) =
∑∞

n=1 af (n)n−s be its associated L-function. From Theorem

1.3, we know that Lf (s) has an Euler product if and only if f(z) be an eigenform.

The next proposition will establish the Euler product of the modified Rankin-Selberg

convolution of the modular L-functions associated to two eigenforms f and g. To derive

the desired Euler product we need the following lemma.

Lemma 2.13 Let f and g be two normalized eigenforms in Γ0(N), and let

Lf (s) =
∏
p|N

(
1− af (p)p−s

)−1
∏
p-N

(
1− εpp−s

)−1 (
1− ε̄pp−s

)−1

and

Lg(s) =
∏
p|N

(
1− ag(p)p−s

)−1
∏
p-N

(
1− δpp−s

)−1 (
1− δ̄pp−s

)−1

be their associated L-functions, where εp+ε̄p = af (p), δp+δ̄p = ag(p) and |εp| = |δp| = 1.

Then, for Re(s) > 1 and p - N , we have the following identity

(1− p−2s)−1

∞∑
k=0

af (p
k)ag(p

k)

pks

=
(
1− εpδpp−s

)−1 (
1− εpδ̄pp−s

)−1 (
1− ε̄pδpp−s

)−1 (
1− ε̄pδ̄pp−s

)−1
.

Proof Let p - N . We recall that the coefficients af (n) and ag(n) satisfy the following:

af (p
k) = af (p)af (p

k−1)− af (pk−2),

ag(p
k) = ag(p)ag(p

k−1)− ag(pk−2).

Applying the above identities repeatedly yields

af (p
k)ag(p

k)− af (p)af (pk−1)ag(p)ag(p
k−1) +

(
af (p)

2 + ag(p)
2 − 2

)
af (p

k−2)ag(p
k−2)

−af (p)af (pk−3)ag(p)ag(p
k−3) + af (p

k−4)ag(p
k−4) = 0. (2.4)
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Also by using the above relations between the coefficients af (p), ag(p) and the complex

units εp, δp, we have(
1− εpδpp−s

) (
1− εpδ̄pp−s

) (
1− ε̄pδpp−s

) (
1− ε̄pδ̄pp−s

)
= 1− af (p)ag(p)p−s +

(
af (p)

2 + ag(p)
2 − 2

)
p−2s − af (p)ag(p)p−3s + p−4s. (2.5)

Putting together (2.4) and (2.5), and following a tedious calculation, we arrive at

(
1− εpδpp−s

) (
1− εpδ̄pp−s

) (
1− ε̄pδpp−s

) (
1− ε̄pδ̄pp−s

) ∞∑
k=0

af (p
k)ag(p

k)

pks

= 1− 1

p2s
,

which is equivalent to the statement of the lemma.

This completes the proof. �

Proposition 2.14 The modified Rankin-Selberg convolution of the modular L-functions

associated to two normalized eigenforms f and g has the following Euler product

L(f ⊗ g, s) =
∏
p|N

(
1− af (p)ag(p)p−s

)−1

×
∏
p-N

(
1− εpδpp−s

)−1 (
1− εpδ̄pp−s

)−1 (
1− ε̄pδpp−s

)−1 (
1− ε̄pδ̄pp−s

)−1
.

Proof First of all we recall that the coefficients of eigenforms are multiplicative and

real (see Subsection 1.2.3). So we have

L(f ⊗ g, s) = ζN(2s)
∏

all primes

(
∞∑
k=0

af (p
k)ag(p

k)

pks

)
.

For p | N , since af (p
k) = af (p)

k and ag(p
k) = ag(p)

k, we have

∞∑
k=0

af (p
k)ag(p

k)

pks
=

∞∑
k=0

af (p)
kag(p)

k

pks

=
(
1− af (p)ag(p)p−s

)−1
.

Using this and applying the previous lemma, we attain the result. �
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2.3 Symmetric Square L-Function

The following lemma gives a new representation for the Rankin-Selberg convolution

L(f × f, s) of the modular L-function associated to an eigenform f with itself.

Lemma 2.15 Let f be an eigenform of weight k and level N . Then,

L(f × f, s) = ζN(s)
∞∑
n=1

af (n
2)

ns
.

Proof On one hand, by the definition of

ζN(s) =
∞∑
n=1

g.c.d.(n,N)=1

1

ns

we have

ζN(s)
∞∑
n=1

af (n
2)

ns
=
∞∑
n=1

b(n)

ns

where b(n) =
∑
d|n

g.c.d.(d,N)=1

af

(
n2

d2

)
.

On the other hand, we have

(af (n))2 =
∑
d|n

g.c.d.(d,N)=1

af

(
n2

d2

)

(see [11], p. 163, Proposition 39). This completes the proof. �

Inspired by the previous lemma, we define the main object of this section.

Definition 2.16 Let f be a normalized eigenform of weight k and level N . For

Re(s) > 1, the symmetric square L-function L(sym2 f, s) associated to f is defined

by

L(sym2 f, s) = ζN(2s)
∞∑
n=1

af (n
2)

ns
.
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Lemma 2.15 shows that the symmetric square L-function satisfies the following

ζN(s)L(sym2 f, s) = ζN(2s)L(f × f, s) = L(f ⊗ f, s).

This identity, together with Theorem 2.12, establishes a meromorphic continuation of

L(sym2 f, s) to C. In 1975 Shimura [22] proved that the symmetric square L-function

in fact has an analytic continuation to the whole complex plane.

The value of L(sym2 f, s) at s = 1 is of special interest. By part (iii) of Theorem

2.12 and calculating the residue of ζN(s) at s = 1, one can deduce that,

L(sym2 f, 1) =
π(4π)k

2N(k − 1)!
〈f, f〉. (2.6)

The other important fact about the symmetric square L-function is that for square-

free N , it satisfies a functional equation. Let

L∞(sym2, s) = π−
3
2
sΓ

(
s+ 1

2

)
Γ

(
s+ k − 1

2

)
Γ

(
s+ k

2

)
,

and let

Λ(sym2 f, s) = N sL∞(sym2, s)L(sym2 f, s).

Then the symmetric square L-function satisfies the functional equation

Λ(sym2 f, s) = Λ(sym2 f, 1− s). (2.7)

In fact this functional equation can be derived from the functional equation for L(f ⊗
f, s) and the functional equation (1.2). In part (v) of Theorem 2.12, we established

the functional equation of L(f ⊗ f, s) for N = 1. For square-free N , the proof of

the functional equation of L(f ⊗ g, s), and consequently the functional equation of

L(sym2 f, s), is due to Ogg (see [17], Theorem 6, p. 311).
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Chapter 3

Non-Vanishing on the Line Re(s) = 1

3.1 Introduction

Let f and g be two eigenforms with respect to the family of the Hecke operators for

Γ0(N) (see Subsection 1.2.3). Let Lf (s) =
∑∞

n=1 af (n)n−s and Lg(s) =
∑∞

n=1 ag(n)n−s

be the L-functions associated to f and g, respectively. Let

L(f ⊗ g, s) = ζN(2s)
∞∑
n=1

af (n)ag(n)

ns

be the modified Rankin-Selberg convolution of Lf (s) and Lg(s). Let 〈f, g〉 denote the

Petersson inner product of f and g. In [17] (Theorem 4) the following is proved:

Theorem 3.1 (Ogg) If 〈f, g〉 = 0, then L(f ⊗ g, 1) 6= 0.

In this chapter we prove similar non-vanishing results for a certain family of Dirichlet

series and their convolutions. The non-vanishing of many classical L-functions will be

simple corollaries of our general theorems. Also as a consequence of our theorems, we

will be able to extend Ogg’s theorem to the line Re(s) = 1. We start by introducing

an important family of Dirichlet series.

3.2 A Class of Dirichlet Series

In 1989, Selberg [20] considered a certain class of Dirichlet series and announced a

series of deep conjectures regarding the elements of that class.
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Definition 3.2 The Selberg class S is the family of functions F (s) of a complex vari-

able s satisfying the following properties:

(i) (Dirichlet Series): for Re(s) > 1,

F (s) =
∞∑
n=1

aF (n)

ns

where aF (1) = 1;

(ii) (Analytic Continuation): for some integer m ≥ 0, (s− 1)mF (s) extends to an

entire function of finite order;

(iii) (Functional Equation): there are numbers Q > 0, αi ≥ 0, ri ∈ C with Re(ri) ≥
0 so that

Φ(s) = Qs

d∏
i=1

Γ(αis+ ri)F (s)

satisfies the functional equation

Φ(s) = wΦ̄(1− s)

where w is a complex number with |w| = 1 and Φ̄(s) = Φ(s̄);

(iv) (Euler Product): for Re(s) > 1,

F (s) =
∏
p

exp

(
∞∑
k=1

bF (pk)

pks

)

where bF (pk) = O(pkθ) for some θ < 1/2;

(v) (Ramanujan Hypothesis): for any fixed ε > 0,

aF (n) = O(nε)

where the implied constant may depend upon ε.

In our theorems, we only need to consider Dirichlet series that satisfy conditions

similar to (ii), (iv) and (v). More precisely, we consider the following class.

Definition 3.3 The class S̄ is the family of Dirichlet series F (s) =
∑∞

n=1 aF (n)n−s

(Re(s) > 1) satisfying the following properties:
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(a) For Re(s) > 1, we have

F (s) =
∏
p

exp

(
∞∑
k=1

bF (pk)

pks

)
;

(b) For any fixed ε > 0,

aF (n) = O(nε)

where the implied constant may depend upon ε.

(c) F (s) has an analytic continuation to the line Re(s) = 1, except for a possible

pole at point s = 1.

For F ∈ S̄, we write

F̄ (s) = F (s̄) =
∞∑
n=1

aF (n)

ns
=
∏
p

exp

(
∞∑
k=1

bF (pk)

pks

)
.

Note that if F is analytic in a region A, then F̄ is analytic in the region Ā = {s̄ : s ∈ A}.
So, if A be a symmetric region with respect to the real axis (the case that we are dealing

with in this chapter), then the analyticity domain of F and F̄ are the same. Also note

that if F be the analytic continuation of f in a symmetric region, then F̄ will be the

analytic continuation of f̄ .

We continue by defining a convolution operation on S̄.

Definition 3.4 For F, G ∈ S̄, the Euler product convolution of F and G is defined as

(F ⊗G)(s) =
∏
p

exp

(
∞∑
k=1

kbF (pk)bG(pk)

pks

)
.

Lemma 3.5 For F, G in S̄, (F ⊗G)(s) is convergent for Re(s) > 1.

Proof First we show that |aF (n)| ≤ c(ε)nε implies

|bF (pk)| ≤ c(ε)(2k − 1)pkε

k
. (3.1)

By taking logarithmic derivative of both sides of

F (s) =
∞∑
n=1

aF (n)

ns
=
∏
p

exp

(
∞∑
k=1

bF (pk)

pks

)
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we come to

−F
′(s)

F (s)
=
∑
p,k

kbF (pk) log p

pks
.

By cross multiplying and using the formula F ′(s) = −
∑∞

n=1
aF (n) logn

ns
, we get

aF (n) log n =
∑
pj |n

jbF (pj)aF (
n

pj
) log p.

In particular for n = pk we have

kbF (pk) log p = kaF (pk) log p−
k−1∑
j=1

jbF (pj)aF (pk−j) log p

or

kbF (pk) = kaF (pk)−
k−1∑
j=1

jbF (pj)aF (pk−j).

We prove (3.1) by induction on k. For k = 1 we have aF (p) = bF (p) and (3.1) is

clear. Now suppose that (3.1) holds for all j ≤ k − 1. We have

k|bF (pk)| ≤ c(ε)kpkε +
k−1∑
j=1

j|bF (pj)|c(ε)p(k−j)ε

≤ c(ε)pkε

{
k +

k−1∑
j=1

(2j − 1)

}
≤ c(ε)pkε(2k − 1).

This proves (3.1) for any p and k.

Now we prove the lemma. Suppose that σ = Re(s) ≥ 1 + 3ε. By the inequality

|ez| ≤ e|z| and by (3.1) we have∣∣∣∣∣exp

(
∞∑
k=1

kbF (pk)bG(pk)

pks

)∣∣∣∣∣ ≤ exp

(
∞∑
k=1

k|bF (pk)||bG(pk)|
pkσ

)

� exp

(
∞∑
k=1

(2k − 1)2p2kε/k

pkσ

)
.

Replacing 2k − 1 by 2k and using the expansion

− log(1− z) = z +
z2

2
+
z3

3
+ · · · (3.2)
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valid for |z| < 1, we get∣∣∣∣∣exp

(
∞∑
k=1

kbF (pk)bG(pk)

pks

)∣∣∣∣∣ � exp

(
∞∑
k=1

1

k

(
4

pσ−2ε

)k)

=

(
1− 4

pσ−2ε

)−1

.

Since σ − 2ε ≥ 1 + ε > 1, the series
∑
p

4

pσ−2ε
is convergent. Therefore the product∏

p

(
1− 4

pσ−2ε

)
is also convergent, and nonzero (see [1], p. 191). This implies that

|(F ⊗G)(s)| �
∏
p

(
1− 4

pσ−2ε

)−1

<∞.

The proof is complete. �

In the following lemma we will show that ζ(s), Lχ(s), Lf (s), Lf,χ(s) and L(f⊗g, s)
(for normalized eigenforms f and g) are all in S̄. Note that the conditions (b) and (c)

in the definition of S̄ are clearly satisfied for these Dirichlet series, so we only need to

check the condition (a) for them. Furthermore, we will establish the basic properties

of the Euler product convolution.

Lemma 3.6 (i) ζ(s) is in S̄, and for any F in S̄, we have

(F ⊗ ζ)(s) = F (s).

(ii) For F in S̄, we have

(ζ ⊗ F )(s) = F̄ (s).

(iii) If χ is a Dirichlet character (mod q), then Lχ(s) is in S̄, and

(Lχ ⊗ Lχ)(s) = ζq(s).

(iv) Let f be a normalized eigenform in Sk(N). Then Lf (s) is in S̄, and

(Lf ⊗ Lχ)(s) = Lf,χ(s).

(v) For any two normalized eigenforms f and g in Sk(N), (Lf ⊗Lg)(s) is in S̄, and

(Lf ⊗ Lg)(s) = L(f ⊗ g, s).
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Proof (i) By using the expansion (3.2), we get

ζ(s) =
∏
p

(
1− 1

ps

)−1

=
∏
p

exp

(
− log

(
1− 1

ps

))
=

∏
p

exp

(
1

ps
+

1/2

p2s
+

1/3

p3s
+ · · ·

)
.

This shows that ζ(s) is in S̄. For F ∈ S̄, we have

(F ⊗ ζ)(s) =
∏
p

exp

(
∞∑
k=1

kbF (pk) 1
k

pks

)

=
∏
p

exp

(
∞∑
k=1

bF (pk)

pks

)
= F (s).

(ii) Similarly we have

(ζ ⊗ F )(s) =
∏
p

exp

(
∞∑
k=1

k 1
k
bF (pk)

pks

)
= F̄ (s).

(iii) Similar to (i), by using (3.2) and for Re(s) > 1, we have

Lχ(s) =
∏
p

(
1− χ(p)p−s

)−1

=
∏
p

exp

(
∞∑
k=1

χ(p)k/k

pks

)
.

This proves that Lχ(s) is in S̄. Moreover,

(Lχ ⊗ Lχ)(s) =
∏
p

exp

(
∞∑
k=1

χ(pk)χ(pk)/k

pks

)

=
∏
p-q

exp

(
∞∑
k=1

1/k

pks

)
= ζq(s).
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(iv) Lf is in S̄, since by Corollary 1.5, we have

Lf (s) =
∏
p|N

(
1− af (p)p−s

)−1
∏
p-N

(
1− εpp−s

)−1 (
1− ε̄pp−s

)−1

=
∏
p|N

exp

(
∞∑
k=1

af (p)
k/k

pks

)∏
p-N

exp

(
∞∑
k=1

(
εkp + ε̄kp

)
/k

pks

)
.

We have

(Lf ⊗ Lχ)(s) =
∏
p|N

exp

(
∞∑
k=1

af (p)
kχ(p)k/k

pks

)∏
p-N

exp

(
∞∑
k=1

(εkp + ε̄kp)χ(p)k/k

pks

)
.

Also note that since af (n) and χ(n) are multiplicative,

Lf,χ(s) =
∏
p

(
∞∑
l=0

af (p
l)χ(p)l

pls

)
.

If p | N , the corresponding p-factor for (Lf ⊗ Lχ)(s) is

exp

(
∞∑
k=1

af (p)
kχ(p)k/k

pks

)
=
(
1− af (p)χ(p)p−s

)−1

and the corresponding p-factor for Lf,χ(s) is also

∞∑
l=0

af (p)
lχ(p)l

pls
=
(
1− af (p)χ(p)p−s

)−1
.

Now suppose that p - N . To prove that the corresponding p-factors in the Euler

products of (Lf ⊗ Lχ)(s) and Lf,χ(s) are equal, we need to prove that

exp

(
∞∑
k=1

(εkp + ε̄kp)χ(p)k/k

pks

)
=
∞∑
k=0

af (p
k)χ(p)k

pks
.

These two quantities are equal if and only if the following equality holds

(1− εpχ(p)p−s)−1(1− ε̄pχ(p)p−s)−1 =
∞∑
k=0

af (p
k)χ(p)k

pks
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or (
1− af (p)χ(p)p−s + χ(p)2p−2s

) ∞∑
k=0

af (p
k)χ(p)k

pks
= 1.

After expanding, the left-hand side becomes

∞∑
k=0

af (p
k)χ(p)k

pks
−
∞∑
k=0

af (p)af (p
k)χ(p)k+1

p(k+1)s
+
∞∑
k=0

af (p
k)χ(p)k+2

p(k+2)s

or

1 +
af (p)χ(p)

ps
− af (p)χ(p)

ps
+
∞∑
k=0

(af (p
k+2)− af (p)af (pk+1) + af (p

k))χ(p)k+2

p(k+2)s
,

which is clearly equal to 1. Therefore (Lf ⊗ Lχ)(s) = Lf,χ(s).

(v) On one hand, from part (iv), we have

Lf (s) =
∏
p|N

exp

(
∞∑
k=1

af (p)
k/k

pks

)∏
p-N

exp

(
∞∑
k=1

(εkp + ε̄kp)/k

pks

)

and

Lg(s) =
∏
p|N

exp

(
∞∑
k=1

ag(p)
k/k

pks

)∏
p-N

exp

(
∞∑
k=1

(δkp + δ̄kp)/k

pks

)
.

So, we have

(Lf ⊗ Lg)(s) =
∏
p|N

exp

(
∞∑
k=1

af (p)
kag(p)

k/k

pks

)∏
p-N

exp

(
∞∑
k=1

(εkp + ε̄kp)(δ
k
p + δ̄kp)/k

pks

)
=

∏
p|N

(1− af (p)ag(p)p−s)−1

×
∏
p-N

(1− εpδpp−s)−1(1− εpδ̄pp−s)−1(1− ε̄pδpp−s)−1(1− ε̄pδ̄pp−s)−1.

This shows that (Lf ⊗ Lg)(s) is in S̄.

On the other hand, from Proposition 2.14 we know that

L(f ⊗ g, s) =
∏
p|N

(
1− af (p)ag(p)p−s

)−1

×
∏
p-N

(1− εpδpp−s)−1(1− εpδ̄pp−1)−1(1− ε̄pδpp−s)−1(1− ε̄pδ̄pp−s)−1.
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Thus, (Lf ⊗ Lg)(s) = L(f ⊗ g, s).

This completes the proof. �

3.3 Mertens’s Method

As we mentioned in Section 1.1, the main step in the proof of the Prime Number

Theorem is establishing the non-vanishing of the Riemann zeta-function on the line

Re(s) = 1. This fact was proved by Hadamard and de la Vallée Poussin in 1896. In 1898

Mertens gave a simpler proof for this fact. Mertens’s proof depends upon the choice

of a suitable trigonometric inequality. This line of proof is adaptable for establishing

the non-vanishing of various L-functions. In [18], Rankin used this method to prove

the non-vanishing of Lf (s) on the line Re(s) = 1, s 6= 1, where f is an eigenform for

Γ0(N). The proof of the following lemma, due to K. Murty [16], which is similar to

the Mertens’s proof, depends on a certain trigonometric inequality.

Lemma 3.7 Let f(s) be a complex function satisfying the following:

(i) f(s) is analytic in Re(s) > 1 and non-zero there;

(ii) log f(s) can be written as a Dirichlet series

∞∑
n=1

bn
ns

with bn ≥ 0 for Re(s) > 1;

(iii) On the line Re(s) = 1, f(s) is analytic except for a pole of order e ≥ 0 at

s = 1.

Then, if f(s) has a zero on the line Re(s) = 1, the order of that zero is bounded by
e

2
.

Proof Suppose f has a zero at point 1+it0 (t0 6= 0) of order k > e
2
. Then e ≤ 2k−1.

Now consider the function

g(s) = f(s)2k+1f(s+ it0)4kf(s+ 2it0)4k−2 · · · f(s+ 2kit0)2.

g(s) is analytic for Re(s) > 1 and vanishes at s = 1 as

(4k)k − (2k + 1)e ≥ 4k2 − (2k + 1)(2k − 1) = 1.
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Note that for Re(s) > 1,

log g(s) =
∞∑
n=1

bn
ns

(
2k + 1 + 2

2k∑
j=1

(2k + 1− j)n−ijt0
)
.

Now let θn = t0 log n. Then for s = σ > 1,

log |g(σ)| = Re(log g(σ))

=
∞∑
n=1

bn
nσ

(
2k + 1 + 2

2k∑
j=1

(2k + 1− j) cos jθn

)
.

Applying the trigonometric identity

2k + 1 + 2
2k∑
j=1

(2k + 1− j) cos jθ =

(
1 + 2

k∑
j=1

cos jθ

)2

in the previous equality yields

log |g(σ)| =
∞∑
n=1

bn
nσ

(
1 + 2

k∑
j=1

cos jθn

)2

≥ 0.

Hence, log |g(σ)| ≥ 0 for σ > 1, i.e., |g(σ)| ≥ 1. So

0 = |g(1)| = lim
σ→1+

|g(σ)| ≥ 1,

which is a contradiction.

The proof is complete. �

Corollary 3.8 (i) ζ(1 + it) 6= 0 for t 6= 0.

(ii) For any Dirichlet character χ (mod q), Lχ(1 + it) 6= 0 for t 6= 0.

(iii) If χ is complex (i.e., χ 6= χ), Lχ(1) 6= 0.

Proof (i) We know that ζ(s) has an analytic continuation to the whole complex

plane, except for a simple pole at s = 1 (see Section 1.1) and is nonzero for Re(s) > 1.

Also by (3.2), we have

log ζ(s) =
∑
p

∞∑
k=1

1

kpks
.

46



Therefore, by Lemma 3.7, we are done.

(ii) Consider the following product

f(s) =
∏
χ

Lχ(s).

f(s) has an analytic continuation to the whole complex plane, except for a simple pole

at s = 1 (which comes from Lχ0(s)), and is nonzero for Re(s) > 1. Now by applying

the orthogonality relations for characters (mod q), i.e.,

1

φ(q)

∑
χ

χ(a) =

{
1 if a ≡ 1 mod q

0 otherwise

(see [15], Exercise 2.2.9), and for Re(s) > 1, we have

log f(s) =
∑
χ

logLχ(s)

= φ(q)
∑
p,k

pk≡1 mod q

1

kpks
.

This is a Dirichlet series with non-negative coefficients. Thus, by Lemma 3.7, f(1+it) 6=
0 for t 6= 0. This proves (ii).

(iii) Suppose that for a complex character χ1, Lχ1(1) = 0. Thus, Lχ1
(1) = 0. Since

χ1 6= χ1, and since all factors Lχ(s) of f(s) are analytic at s = 1 except Lχ0(s), we

conclude that f(s) is in fact analytic at s = 1 and f(1) = 0. This violates the statement

of the Lemma 3.7.

The proof is complete. �

Definition 3.9 For F ∈ S̄ and σ0 ≤ 1, we say F is ⊗-simple in Re(s) > σ0 (resp.

Re(s) ≥ σ0), if F ⊗ F has an analytic continuation to Re(s) > σ0 (resp. Re(s) ≥ σ0),

except for a possible simple pole at s = 1.

The following theorem is the main result of this section.

Theorem 3.10 Let F, G ∈ S̄ be ⊗-simple in Re(s) ≥ 1 and t 6= 0. Then

(i) (F ⊗ F )(1 + it) 6= 0.

(ii) If F = F̄ , G = Ḡ, and if F ⊗ G has an analytic continuation to the line

Re(s) = 1, then (F ⊗G)(1 + it) 6= 0.
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Proof (i) Let f(s) = (F ⊗ F )(s). We have

log f(s) =
∑
p

∞∑
k=1

k|bF (pk)|2

pks

=
∞∑
n=1

c(n)

ns
,

with c(n) ≥ 0. So, f(s) satisfies the conditions of Lemma 3.7 with e = 1. Therefore, the

order of the vanishing of f(s) at point 1+it is ≤ 1
2
. This means that (F⊗F )(1+it) 6= 0.

(ii) Let

f(s) = (F ⊗ F )(s)((F ⊗G)(s))2(G⊗G)(s).

Since for t 6= 0, all the factors of f(s) have finite values at point 1 + it, in order to

prove that (F ⊗G)(1 + it) 6= 0, it suffices to show that f(1 + it) 6= 0. Note that

log f(s) =
∑
p

∞∑
k=1

kbF (pk)2

pks
+ 2

∑
p

∞∑
k=1

kbF (pk)bG(pk)

pks
+
∑
p

∞∑
k=1

kbG(pk)2

pks

=
∑
p

∞∑
k=1

k
(
bF (pk) + bG(pk)

)2

pks

=
∞∑
n=1

c(n)

ns

with c(n) ≥ 0. So, f(s) satisfies the conditions of Lemma 3.7 with e ≤ 2, and therefore,

the order of the vanishing of f(s) at point 1+it is ≤ 1. Now suppose that f(1+it) = 0.

Thus,

(F ⊗ F )(1 + it) ((F ⊗G)(1 + it))2 (G⊗G)(1 + it) = 0.

Since by part (i), (F ⊗ F )(1 + it) 6= 0 and (G ⊗ G)(1 + it) 6= 0, it follows that

(F ⊗ G)(1 + it) = 0. This is a contradiction; otherwise, the order of the vanishing of

f(s) at point 1 + it should be 2.

This completes the proof. �

Corollary 3.11 If F = F̄ ∈ S̄ is analytic and ⊗-simple in Re(s) ≥ 1, then F (1+it) 6=
0 for t 6= 0.
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Proof This is a simple consequence of part (ii) of the previous theorem with G(s) =

ζ(s). �

Corollary 3.12 Let f ∈ Sk(N) be an eigenform for Γ0(N), let χ be a real character

(mod q) and let t 6= 0. Then

(i) Lχ(1 + it) 6= 0 and Lf (1 + it) 6= 0.

(ii) Lf,χ(1 + it) 6= 0.

(iii) L(f ⊗ f, 1 + it) 6= 0 and L(sym2 f, 1 + it) 6= 0.

(iv) Suppose g ∈ Sk(N) is also an eigenform for Γ0(N). If 〈f, g〉 = 0, then L(f ⊗
g, 1 + it) 6= 0.

Proof Without loss of generality, we can assume that f is normalized.

(i) Since Lχ(s) (χ 6= χ0) and Lf (s) are analytic on the line Re(s) = 1, by the

previous corollary, we have the desired result. Note that if χ = χ0, since (Lχ0 ⊗
Lχ0)(s) =

∏
p|q(1− p−s)ζ(s), the result is clear by part (i) of Theorem 3.10 .

(ii) We know that Lf (s) and Lχ(s) are in S̄. Since Lf,χ(s) is the L-function associ-

ated to a cusp form (see Subsection 1.2.2), so Lf,χ(s) is analytic on the line Re(s) = 1.

Therefore, by part (iv) of Lemma 3.6 and part (ii) of Theorem 3.10,

Lf,χ(1 + it) = (Lf ⊗ Lχ)(1 + it) 6= 0.

(iii) Since Lf (s) ∈ S̄ has all the necessary conditions, by part (i) of Theorem 3.10,

we have

L(f ⊗ f, 1 + it) = (Lf ⊗ Lf )(1 + it) 6= 0.

Also, since L(f⊗f, s) = ζN(2s)L(sym2 f, s), we have the desired result for L(sym2 f, s).

(iv) Recall that the coefficients of eigenforms are real (see Subsection 1.2.3). If

〈f, g〉 = 0, by Theorem 2.12, we know that L(f ⊗ g, s) is actually an entire function.

Therefore, by part (ii) of Theorem 3.10, L(f ⊗ g, 1 + it) 6= 0.

This completes the proof. �

3.4 Landau’s Theorem

In the previous section we proved a general non-vanishing result on the line Re(s) = 1

when s 6= 1. In this section, we consider the non-vanishing problem for s = 1. To do

this, our basic ingredient is the following lemma.
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Lemma 3.13 (Landau) A Dirichlet series with non-negative coefficients has a sin-

gularity at its abscissa of convergence.

Proof Let σ0 be the abscissa of convergence for the Dirichlet series

f(s) =
∞∑
n=1

a(n)

ns

and suppose that a(n) ≥ 0. If f is not singular at σ0, then there is a power series

representation for f

f(s) =
∞∑
k=0

f (k)(σ1)

k!
(s− σ1)k

for |s− σ1| < ε, where σ1 − ε < σ0 < σ1. Now for σ1 − ε < σ < σ1 we have

f(σ) =
∞∑
k=0

f (k)(σ1)

k!
(σ − σ1)k

=
∞∑
k=0

(−1)kf (k)(σ1)

k!
(σ1 − σ)k.

Since σ1 > σ, by the well-known formula for the successive derivatives of a convergent

Dirichlet series, we can write

f(σ) =
∞∑
k=0

(
(σ1 − σ)k

k!

∞∑
n=1

a(n)(log n)k

nσ1

)

=
∞∑
k=0

∞∑
n=1

a(n) ((σ1 − σ) log n)k

k!nσ1
.

However, since the last double series has non-negative terms, we are allowed to inter-

change the order of summation to get

f(σ) =
∞∑
n=1

(
a(n)

nσ1

∞∑
k=0

((σ1 − σ) log n)k

k!

)

=
∞∑
n=1

a(n)

nσ1
nσ1−σ

=
∞∑
n=1

a(n)

nσ
,
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which is a contradiction with our assumption that σ0 is the abscissa of convergence of

the series.

This completes the proof. �

Corollary 3.14 Let f(s) be a complex function that satisfies the following:

(i) f(s) is analytic on the half-plane Re(s) > σ0;

(ii) log f(s) has a representation in terms of a Dirichlet series with non-negative

coefficients on the half-plane Re(s) > σ1 (σ1 > σ0).

Then f(s) 6= 0 for Re(s) > σ0.

Proof Let σ2 be the largest real zero of f (σ0 < σ2 ≤ σ1). Since log f(s) =
∑∞

n=1
c(n)
ns

for Re(s) > σ1 (c(n) ≥ 0), and since log f(s) is analytic in a neighbourhood of the

segment σ2 < σ ≤ σ1, then by the previous lemma, we have

log f(s) =
∞∑
n=1

c(n)

ns

for Re(s) > σ2. Thus,

log |f(σ)| = Re(log f(σ))

= log f(σ)

=
∞∑
n=1

c(n)

nσ
≥ 0

for σ > σ2. Therefore, |f(σ)| ≥ 1 for σ > σ2. This contradicts the assumption

f(σ2) = 0, and therefore f has no real zero σ > σ0. So log f(s) is analytic on the

interval (σ0, σ1], and Lemma 3.13 in fact shows that log f(s) exists and is analytic for

Re(s) > σ0. This means that f(s) is non-zero for Re(s) > σ0.

The proof is complete. �

Here, we prove the main result of this section.

Theorem 3.15 Let σ0 < 1, and assume the following:

(i) F and G (as members of S̄) are ⊗-simple in Re(s) > σ0;

(ii) F ⊗G has an analytic continuation to the half-plane Re(s) > σ0;

(iii) At least one of F ⊗F , G⊗G, or F ⊗G has zeros in the half-plane Re(s) > σ0.

Then (F ⊗G)(1) 6= 0.
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Proof Suppose that (F ⊗G)(1) = 0, and let

f(s) = (F ⊗ F )(s) (F ⊗G)(s) (F̄ ⊗ Ḡ)(s) (G⊗G)(s).

First of all note that F̄ ⊗ Ḡ is analytic for Re(s) > σ0. Since (F ⊗ G)(1) = 0, then

(F̄ ⊗ Ḡ)(1) = 0, and since s = 1 is a pole of order ≤ 1 for both F ⊗ F and G⊗G, we

conclude that f(s) is analytic at point s = 1, and therefore, analytic for Re(s) > σ0.

Now note that for Re(s) > 1,

log f(s) =
∑
p

∞∑
k=1

k|bF (pk)|2

pks
+
∑
p

∞∑
k=1

kbF (pk)bG(pk)

pks

+
∑
p

∞∑
k=1

kbF (pk)bG(pk)

pks
+
∑
p

∞∑
k=1

k|bG(pk)|2

pks

=
∑
p

∞∑
k=1

k|bF (pk) + bG(pk)|2

pks

=
∞∑
n=1

c(n)

ns

where c(n) ≥ 0. So, f(s) satisfies the conditions of the Corollary 3.14 with σ1 = 1, and

therefore, f(s) 6= 0 for Re(s) > σ0. This contradicts our assumption in (iii).

The proof is complete. �

Corollary 3.16 Let F ∈ S̄ be analytic and ⊗-simple in Re(s) ≥ 1
2
, then F (1) 6= 0.

Proof Let G(s) = ζ(s). Note that F ⊗ G = F and Ḡ = G. Also notice that ζ(s)

has zeros in the half-plane Re(s) ≥ 1/2. Thus, all the conditions of the Theorem 3.15

are met with σ0 ≤ 1
2
. Therefore, F (1) = (F ⊗G)(1) 6= 0. �

Corollary 3.17 Let f, g ∈ Sk(N) be eigenforms for Γ0(N), and let χ be a Dirichlet

character (mod q). Then

(i) If χ 6= χ0, then Lχ(1) 6= 0.

(ii) Lf (1) 6= 0.

(iii) Lf,χ(1) 6= 0.

(iv) If 〈f, g〉 = 0, then L(f ⊗ g, 1) 6= 0.
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Proof (i) By part (iii) of Lemma 3.6, we have

(Lχ ⊗ Lχ)(s) = ζq(s).

This shows that Lχ(s) satisfies the conditions in Corollary 3.16, and therefore Lχ(1) 6=
0.

(ii) By part (v) of Lemma 3.6, we have

(Lf ⊗ Lf )(s) = L(f ⊗ f, s).

This and Theorem 2.12 imply that Lf (s) is ⊗-simple in Re(s) ≥ 1/2. So by Corollary

3.16 we are done.

(iii) Note that (Lχ ⊗ Lχ)(s) and (Lf ⊗ Lf )(s) can be extended analytically to the

whole complex plane, except for a simple pole at s = 1. Also by part (iv) of Lemma

3.6, we have

Lf,χ(s) = (Lf ⊗ Lχ)(s).

We know that Lf,χ ∈ Sk(q2N) (see Subsection 1.2.2). So, (Lf ⊗Lχ)(s) has an analytic

continuation to the whole complex plane. Also note that (Lχ ⊗ Lχ)(s) = ζq(s) has in

fact infinitely many zeros (see [7], p. 97). So all the conditions of Theorem 3.15 are

met and therefore, Lf,χ(1) = (Lf ⊗ Lχ)(1) 6= 0.

(iv) Similar to the proof of part (iii), we can show that the conditions (i) and (ii) of

Theorem 3.15 are satisfied. The result will be obtained if we only show that L(f⊗g, s)
has a zero in the complex plane. By (2.3), if 〈f, g〉 = 0, then

Φ(s) =

(
2π√
N

)−2s

Γ(s)Γ(s+ k − 1)L(f ⊗ g, s)

is analytic at s = 0. Since Γ(s) has a pole at s = 0, then L(f ⊗ g, 0) = 0.

This completes the proof. �

3.5 Ingham’s Proof

In the previous section we studied the non-vanishing of certain Dirichlet series at point

s = 1. Comparing the different methods we have applied in Sections 3.3 and 3.4, one
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realizes that the non-vanishing problem at point s = 1 has a distinct nature, and it

seems that Landau’s Theorem cannot be applied to prove non-vanishing results for

other points on the line Re(s) = 1. However, in this section, we will show that for

Dirichlet series with completely multiplicative coefficients, one can apply the technique

employed in the previous section to prove a non-vanishing result on the line Re(s) = 1.

Our result is a generalization of Ingham’s proof of the non-vanishing of the Riemann

zeta-function on the line Re(s) = 1 [9]. To do this, we start with the following defini-

tions.

Definition 3.18 Let F,G ∈ S̄. Then the L-convolution1 of F and G is defined by

L(F ⊗G, s) =
∞∑
n=1

aF (n)aG(n)

ns
.

An arithmetic function f(n) is called multiplicative (resp. completely multiplicative)

if f(1) = 1 and f(mn) = f(m)f(n) for all m, n with g.c.d.(m,n) = 1 (resp. for all

m, n).

Lemma 3.19 For F,G ∈ S̄ with completely multiplicative coefficients,

L(F ⊗G, s) = (F ⊗G)(s).

Proof We have

L(F ⊗G, s) =
∞∑
n=1

aF (n)aG(n)

ns

=
∏
p

 ∞∑
k=0

aF (p)k
(
aG(p)

)k
pks


=

∏
p

(
1− aF (p)aG(p)p−s

)−1

=
∏
p

exp

 ∞∑
k=1

aF (p)k
(
aG(p)

)k
/k

pks


= (F ⊗G)(s).

1We have chosen this name to distinguish this convolution from the Rankin-Selberg convolution.
Note that F (s) and G(s) are not necessarily modular L-functions.
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The last equality is true since

F (s) =
∏
p

(
∞∑
k=0

aF (p)k

pks

)
=

∏
p

(
1− aF (p)p−s

)−1

=
∏
p

exp

(
∞∑
k=1

aF (p)k/k

pks

)
.

and similarly

G(s) =
∏
p

exp

(
∞∑
k=1

aG(p)k/k

pks

)
.

The proof is complete. �

Definition 3.20 If f(n) is an arithmetic function, the formal L-series attached to

f(n) is defined by

L(f, s) =
∞∑
n=1

f(n)

ns
.

If g(n) is also an arithmetic function, the Dirichlet convolution of f(n) and g(n) is

defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(
n

d
).

It can be shown that the Dirichlet convolution of two multiplicative arithmetic functions

is multiplicative (see [3], Theorem 2.14, p. 35). The following identity of formal L-

series, due to J. Borwein and Choi [6], will be fundamental in the proof of the main

result of this section.

Lemma 3.21 Let f1, f2, g1, g2 be completely multiplicative arithmetic functions. Then

we have

∞∑
n=1

(f1 ∗ g1)(n)(f2 ∗ g2)(n)

ns
=
L(f1f2, s)L(g1g2, s)L(f1g2, s)L(f2g1, s)

L(f1f2g1g2, 2s)
.
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Proof We only need to prove that the corresponding p-factors in the Euler product

of both sides are equal.

First suppose that fi 6= gi (i = 1, 2). Since both f1∗g1 and f2∗g2 are multiplicative,

the left-hand side has an Euler product with the p-factor

L(p)(s) =
∞∑
k=0

(f1 ∗ g1)(pk)(f2 ∗ g2)(pk)

pks
.

Also since all functions f1f2, g1g2 , f1g2 , f2g1 and f1f2g1g2 are completely multiplica-

tive, the following fraction is the corresponding p-factor in the Euler product of the

right-hand side

R(p)(s) =
1− (f1f2g1g2)(p)p−2s

(1− (f1f2)(p)p−s)(1− (g1g2)(p)p−s)(1− (f1g2)(p)p−s)(1− (f2g1)(p)p−s)
.

Now by using the following elementary identity

ab
1−abx + cd

1−cdx −
ad

1−adx −
bc

1−bcx

(a− c)(b− d)
=

1− abcdx2

(1− abx)(1− cdx)(1− adx)(1− bcx)

and the fact that

(fi ∗ gi)(pk) =
∑
d|pk

fi(d)gi(
pk

d
) =

fi(p)
k+1 − gi(p)k+1

fi(p)− gi(p)

which comes from the complete multiplicativity, we have

L(p)(s) =
∞∑
k=0

(f1 ∗ g1)(pk)(f2 ∗ g2)(pk)p−ks

=
∞∑
k=0

(f1(p)k+1 − g1(p)k+1)(f2(p)k+1 − g2(p)k+1)

(f1(p)− g1(p))(f2(p)− g2(p))
p−ks

=

∑∞
k=0{(f1f2)(p)k+1 + (g1g2)(p)k+1 − (f1g2)(p)k+1 − (f2g1)(p)k+1}p−ks

(f1(p)− g1(p))(f2(p)− g2(p))

=

(f1f2)(p)
1−(f1f2)(p)p−s

+ (g1g2)(p)
1−(g1g2)(p)p−s

− (f1g2)(p)
1−(f1g2)(p)p−s

− (f2g1)(p)
1−(f2g1)(p)p−s

(f1(p)− g1(p))(f2(p)− g2(p))

=
1− (f1f2g1g2)(p)p−2s

(1− (f1f2)(p)p−s)(1− (g1g2)(p)p−s)(1− (f1g2)(p)p−s)(1− (f2g1)(p)p−s)

= R(p)(s).
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Now suppose that f1 = g1 and f2 6= g2. The proof is similar to the previous case.

The only difference is that this time one has to use the identity

b
(1−abx)2 − d

(1−adx)2

b− d
=

1− a2bdx2

(1− abx)2(1− adx)2
.

Note that this also covers the case f1 6= g1, f2 = g2.

Finally, if f1 = g1, f2 = g2, one needs to employ the identity

1 + abx

(1− abx)3
=

1− a2b2x2

(1− abx)4
.

This completes the proof. �

We are ready to state and prove the main result of this section.

Theorem 3.22 Let F , G ∈ S̄ be two Dirichlet series with completely multiplicative

coefficients. Also assume the following:

(i) F and G are ⊗-simple in Re(s) ≥ 1
2
;

(ii) F ⊗G has an analytic continuation to Re(s) ≥ 1
2
;

(iii) (F ⊗G)⊗ (F ⊗G) is analytic for Re(s) > 1 and has a pole at s = 1.

Then, (F ⊗G)(1 + it) 6= 0 for all t.

Proof Let

F (s) =
∞∑
n=1

aF (n)

ns
, G(s) =

∞∑
n=1

aG(n)

ns

and suppose that (F ⊗G)(1 + it0) = 0 for a real t0. Let

f1(n) = aF (n)n−it0 , f2(n) = aF (n)nit0 , g1(n) = aG(n), g2(n) = aG(n),

and for Re(s) > 1, consider the following Dirichlet series

f(s) =
∞∑
n=1

|(f1 ∗ g1)(n)|2

ns
=
∞∑
n=1

(f1 ∗ g1)(n)(f2 ∗ g2)(n)

ns
.

Since f1 and f2 are completely multiplicative, by Lemma 3.19 we have

L(f1f2, s) =
∞∑
n=1

|aF (n)|2

ns

= L(F ⊗ F, s)
= (F ⊗ F )(s).
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Similarly, we can derive the following

L(g1g2, s) = (G⊗G)(s), L(f1g2, s) = (F ⊗G)(s+ it0), L(f2g1, s) = (G⊗F )(s− it0),

and

L(f1f2g1g2, 2s) = [(F ⊗G)⊗ (F ⊗G)] (2s).

So, by Lemma 3.21 and for Re(s) > 1, we have

f(s) =
(F ⊗ F )(s)(G⊗G)(s)(F ⊗G)(s+ it0)(G⊗ F )(s− it0)

[(F ⊗G)⊗ (F ⊗G)] (2s)
.

Now by assumption of (F ⊗G)(1 + it0) = 0 we have in fact the analyticity of f(s) for

Re(s) > 1
2
, and since the coefficients in the series are non-negative, by Lemma 3.13 the

Dirichlet series representing f(s) is convergent for Re(s) > 1
2
. So, for η > 0, we have

f

(
1

2
+ η

)
=
∞∑
n=1

|(f1 ∗ g1)(n)|2

n
1
2

+η
≥ 1.

However, since (F ⊗G)⊗ (F ⊗G) has a pole at s = 1,

[(F ⊗G)⊗ (F ⊗G)]

(
2

(
1

2
+ η

))
= [(F ⊗G)⊗ (F ⊗G)] (1 + 2η)→∞

as η → 0+. This shows that

lim
η→0+

f

(
1

2
+ η

)
= 0,

which is a contradiction.

This completes the proof. �

By choosing G(s) = ζ(s) in the previous theorem, we have

Corollary 3.23 Let F ∈ S̄ be analytic in Re(s) ≥ 1
2

and assume that (F ⊗ F )(s) is

analytic in Re(s) ≥ 1
2
, except for a simple pole at s = 1. If the coefficients of F are

completely multiplicative, then F (1 + it) 6= 0, for all t ∈ R.

Note that the non-vanishing of Lχ(s) (χ 6= χ0) on the line Re(s) = 1, is a simple

consequence of this corollary.
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Chapter 4

Non-Vanishing of Symmetric

Square L-Functions Inside the

Critical Strip

4.1 Introduction

Studying the non-vanishing properties of L-functions inside the critical strip (i.e., 0 ≤
Re(s) ≤ 1) is much more difficult than investigating the non-vanishing of L-functions

at the edge of the critical strip (i.e., Re(s) = 1). The Generalized Riemann Hypothesis

asserts that all L-functions should be non-vanishing on the strip 1
2
< Re(s) ≤ 1.

However, we are very far from a proof of this conjecture. Even in the case of the

Riemann zeta-function, the current techniques of analytic number theory fail to prove

the non-vanishing of the zeta-function on a narrow strip adjacent to the line Re(s) = 1.

Nevertheless, there are results that establish the non-vanishing for infinite families of

L-functions. To prove such results, one should study the asymptotic behavior of the

values of L-functions on average.

In this chapter we prove a non-vanishing theorem for the symmetric square L-

functions associated to newforms of weight 2 and prime level N . The main step in the

proof of our result is establishing an upper bound for the mean values of the symmetric

square L-functions in the critical strip.
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4.2 An Upper Bound for the Mean Square

Let FN be the set of newforms of weight 2 and prime level N and let L(sym2 f, s)

denote the symmetric square L-function associated to the newform f (see Section 2.3

and Subsection 1.2.4 for definitions). For a fixed point s0 inside the critical strip, we

derive an upper bound for the following mean square of symmetric square L-functions∑
f∈FN

|L(sym2 f, s0)|2.

In [10], Iwaniec and Michel proved such an upper bound in the case of Re(s0) = 1
2
. We

closely follow their approach, and show that a similar result is true for a point inside

the critical strip. The main result of this chapter is the following.

Theorem 4.1 Let s0 be a point in the strip 3
4
≤ σ0 = Re(s0) ≤ 1. Then,∑

f∈FN

|L(sym2 f, s0)|2 � |s0|9+ 6
εN1+ε

for any ε > 0. The implied constant depends only on ε.

To prove this theorem, we need several lemmas. The next section is devoted to the

proof of these necessary lemmas.

4.3 Lemmas

We start by finding a representation for L(sym2 f, s0) as a sum of two absolutely conver-

gent series. Recall that L∞(sym2, s) is the product of gamma-factors in the functional

equation of the symmetric square L-functions (see Section 2.3).

Lemma 4.2 Let A > 2 be an integer and let G(s) = cos
( πs

4A

)−3A

. For any s0 with

0 ≤ Re(s0) ≤ 1, we have

L(sym2 f, s0) =
∞∑
n=1

af (n
2)

ns0
Vs0

( n
N

)
+ ε(s0)

∞∑
n=1

af (n
2)

n1−s0
V1−s0

( n
N

)
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where

Vs0(y) =

∫
(2)

G(s)
L∞(sym2, s0 + s)

L∞(sym2, s0)
ζN(2s0 + 2s)y−s

ds

s

and ε(s0) = N1−2s0L∞(sym2, 1− s0)/L∞(sym2, s0). Here,∫
(c)

g(s)ds := lim
T→+∞

∫ T

−T
g(c+ it)idt.

Proof By starting with the first sum in the right-hand side of the statement and

using the definition of Vs0(y), we have

∞∑
n=1

af (n
2)

ns0
Vs0

( n
N

)
=

∞∑
n=1

af (n
2)

ns0

∫
(2)

G(s)
L∞(sym2, s0 + s)

L∞(sym2, s0)
ζN(2s0 + 2s)

(
N

n

)s
ds

s

=

∫
(2)

G(s)
L∞(sym2, s0 + s)

L∞(sym2, s0)

∞∑
n=1

af (n
2)

ns0+s
ζN(2s0 + 2s)N sds

s
.

Now by using the definitions of L(sym2 f, s0) and Λ(sym2 f, s0) (see Section 2.3); and

using the functional equation (2.7), we obtain

∞∑
n=1

af (n
2)

ns0
Vs0

( n
N

)
=

∫
(2)

G(s)
N s0+sL∞(sym2, s0 + s)L(sym2 f, s0 + s)

L∞(sym2, s0)

1

N s0

ds

s

=

∫
(2)

G(s)
Λ(sym2 f, s0 + s)

L∞(sym2, s0)

1

N s0

ds

s

=

∫
(2)

G(s)
Λ(sym2 f, 1− s0 − s)

L∞(sym2, s0)

1

N s0

ds

s
.

Moving the line of integration to (−2) yields

∞∑
n=1

af (n
2)

ns0
Vs0

( n
N

)
= G(0)

Λ(sym2 f, 1− s0)

L∞(sym2, s0)

1

N s0

+

∫
(−2)

G(s)
Λ(sym2 f, 1− s0 − s)

L∞(sym2, s0)

1

N s0

ds

s

= L(sym2 f, s0) +

∫
(−2)

G(s)
Λ(sym2 f, 1− s0 − s)

L∞(sym2, s0)

1

N s0

ds

s
.
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Now by applying the change of variable s 7→ −u, we get

∞∑
n=1

af (n
2)

ns0
Vs0

( n
N

)
= L(sym2 f, s0)−

∫
(2)

G(−u)
Λ(sym2 f, 1− s0 + u)

L∞(sym2, s0)

1

N s0

−du
−u

= L(sym2 f, s0)

−
∫

(2)

G(s)
L∞(sym2, 1− s0 + s)L(sym2 f, 1− s0 + s)

L∞(sym2, s0)
N1−2s0+sds

s
.

By changing the order of addition and integration in the above equality, the second

summand of the right-hand side becomes

N1−2s0
L∞(sym2, 1− s0)

L∞(sym2, s0)

∞∑
n=1

af (n
2)

n1−s0

×
∫

(2)

G(s)
L∞(sym2, 1− s0 + s)

L∞(sym2, 1− s0)
ζN(2− 2s0 + 2s)

(
N

n

)s
ds

s
,

which is equal to

ε(s0)
∞∑
n=1

af (n
2)

n1−s0
V1−s0

( n
N

)
.

This completes the proof. �

In the sequel we need the following fact about the gamma-function, known as

Stirling’s formula. In any vertical strip |σ| ≤ a,

|Γ(σ + it)| =
√

2πe−
1
2
π|t||t|σ−

1
2 (1 + r(σ, t))

where r(σ, t)→ 0 as |t| → ∞ (see [15], Exercise 6.3.15).

In the next lemma we study the growth of Vs0(y).

Lemma 4.3 For any y > 0, and any s0 = σ0 + it0 with 3
4
≤ σ0 ≤ 1, we have

(i) Vs0(y)� d(N)|s0|
3
2
Ay−A.

(ii) Vs0(y)� d(N)
(

max{y
1
2 , y

1
4}+ 1

)
.

(iii) Vs0(y)� d(N)

(
1 +

y

|s0|
3
2

)−A
log

(
2 +

1

y

)
.

62



(iv) For j ≥ 0, let V
(j)
s0 (y) denote the j-th derivative of Vs0(y) with respect to y.

Then,

V (j)
s0

(y)� d(N)y−j

(
1 +

y

|s0|
3
2

)−A
log

(
2 +

1

y

)
.

Here, d(N) stands for the number of divisors of N .

Proof (i) By shifting the line of integration to (A), and by using the definition of

the integral, we have

Vs0(y) =

∫
(A)

G(s)
L∞(sym2, s+ s0)

L∞(sym2, s0)
ζN(2s+ 2s0)y−s

ds

s

=

∫ +∞

−∞
G(A+ it)

L∞(sym2, A+ it+ σ0 + it0)

L∞(sym2, σ0 + it0)
ζN(2A+ 2it+ 2σ0 + 2it0)y−A−it

idt

A+ it
.

(4.1)

For the zeta-factor ζN(s) in (4.1), we have the following estimation

|ζN(2(A+ σ0) + 2i(t+ t0))| =

∣∣∣∣∣ ζ(2A+ 2σ0 + 2it+ 2it0)∏
p|N (1− p−(2A+2σ0+2it+2it0))

−1

∣∣∣∣∣
≤ ζ(2A)

∏
p|N

∣∣1− p−(2A+2σ0+2it+2it0)
∣∣

�
∏
p|N

(1 + p−(2A+2σ0))

≤
∏
p|N

(1 + 1)

≤ d(N).

By applying Stirling’s formula for L∞-factor in (4.1), we have∣∣∣∣L∞(sym2, (A+ σ0) + i(t+ t0))

L∞(sym2, σ0 + it0)

∣∣∣∣
=

∣∣∣∣∣π−
3
2

(A+σ0+it+it0)Γ(A+σ0+it+it0+1
2

)2Γ(A+σ0+it+it0+2
2

)

π−
3
2

(σ0+it0)Γ(σ0+it0+1
2

)2Γ(σ0+it0+2
2

)

∣∣∣∣∣
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≤ π−
3
2
A

(
e−

1
2
π| t+t0

2
|| t+t0

2
|
A+σ0

2

)2

e−
1
2
π| t+t0

2
|| t+t0

2
|
A+σ0+1

2(
e−

1
2
π| t0

2
|| t0

2
|
σ0
2

)2

e−
1
2
π| t0

2
|| t0

2
|
σ0+1

2

� e
3π
4

(|t0|−|t+t0|)
∣∣∣∣t+ t0
t0

∣∣∣∣
3σ0+1

2
∣∣∣∣t+ t0

2

∣∣∣∣ 3A
2

=

(
e

3π
4
|t|(| t0

t
|−|1+

t0
t
|)
∣∣∣∣t+ t0
t0

∣∣∣∣
3σ0+1

2
∣∣∣∣t+ t0

2t0

∣∣∣∣ 3A
2

)
|t0|

3A
2

� |s0|
3A
2 g(t, s0)

where g(t, s0) has exponential decay when |t| → ∞.

Applying the above estimates in (4.1) yields

Vs0(y) � y−A
∫ +∞

−∞
|G(A+ it)||s0|

3A
2 g(t, s0)d(N)

dt√
A2 + t2

� d(N)|s0|
3A
2 y−A.

This proves part (i).

(ii) Shifting the line of integration to (−1
2
), and calculating the residues at s = 0

and s = 1
2
− s0 yield

Vs0(y) = ζN(2s0) +G

(
1

2
− s0

)
L∞(sym2, 1

2
)

L∞(sym2, s0)

ys0−
1
2

1
2
− s0

∏
p|N

(
1− 1

p

)

+

∫
(− 1

2
)

G(s)
L∞(sym2, s+ s0)

L∞(sym2, s0)
ζN(2s+ 2s0)y−s

ds

s
. (4.2)

We show that each summand of the above equality is bounded by a constant multiple

of

d(N)
(

max{y
1
2 , y

1
4}+ 1

)
.
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For the first summand in (4.2), since 3
4
≤ σ0 ≤ 1, we have

|ζN(2s0)| =
|ζ(2s0)|∣∣∣∏p|N(1− p−2s0)−1

∣∣∣
≤ ζ(2σ0)

∏
p|N

∣∣(1− p−2s0)
∣∣

≤ ζ

(
3

2

)∏
p|N

(1 + p−2σ0)

� d(N)

≤ d(N)
(

max{y
1
2 , y

1
4}+ 1

)
.

For the second summand in (4.2), we observe the following:

L∞

(
sym2,

1

2

)
� 1;

1
1
2
− s0

� 1;
∏
p|N

(
1− 1

p

)
� d(N);

and ∣∣∣ys0− 1
2

∣∣∣ = yσ0− 1
2 � max{y

1
2 , y

1
4}+ 1.

Now using the definition of cos z =
eiz + e−iz

2
, for large t0, we have

∣∣∣∣ G(1
2
− s0)

L∞(sym2, s0)

∣∣∣∣ � |e iπ4A (σ0+it0) + e−
iπ
4A

(σ0+it0)|−3A

e−
3π
4
|t0|| t0

2
|

3σ0+1
2

� |e(
iπσ0
4A
−πt0

4A
) + e(− iπσ0

4A
+
πt0
4A

)|−3A

e−
3π
4
|t0|

� |e
πt0
4A (e

iπσ0−2πt0
4A + e−

iπσ0
4A )|−3A

e−
3π
4
|t0|

� 1.

Putting these together, we have

G

(
1

2
− s0

)
L∞(sym2, 1

2
)

L∞(sym2, s0)

ys0−
1
2

1
2
− s0

∏
p|N

(
1− 1

p

)
� d(N)

(
max{y

1
2 , y

1
4}+ 1

)
.
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The estimation of the integral∫
(− 1

2
)

G(s)
L∞(sym2, s+ s0)

L∞(sym2, s0)
ζN(2s+ 2s0)y−s

ds

s

=

∫ +∞

−∞
G(−1

2
+ it)

L∞(sym2,−1
2

+ it+ σ0 + it0)

L∞(sym2, σ0 + it0)
ζN(−1+2it+2σ0 +2it0)y

1
2
−it idt

−1
2

+ it

in (4.2), is very similar to the one which we had in part (i). The main difference is

that this time we have to estimate the zeta-function inside the critical strip. By the

classical inequality

ζ(s) = O(t
1
2 )

for σ = Re(s) ≥ 1
2

and large t (see [15], Exercise 4.2.4), since
1

2
≤ 2σ0 − 1 ≤ 1, we

obtain∫
(− 1

2
)

G(s)
L∞(sym2, s+ s0)

L∞(sym2, s0)
ζN(2s+ 2s0)y−s

ds

s
� d(N)y

1
2

≤ d(N)
(

max{y
1
2 , y

1
4}+ 1

)
.

This completes the proof of part (ii).

(iii) If y is large, log(2 + 1
y
) is bounded (for example, by log 3). Also(
y

|s0|
3
2

)−A
∼

(
1 +

y

|s0|
3
2

)−A
.

So, we can replace the upper bound in (i) by (iii). If y is near to 0, the upper bound

is justified since (1 +
y

|ss|
3
2

)−A is bounded by 1, and max{y 1
2 , y

1
3} + 1 is bounded by

log(2 + 1
y
). This completes the proof of part (iii).

(iv) Let

gN(s, s0) = G(s)
L∞(sym2, s+ s0)

L∞(sym2, s0)
ζN(2s+ 2s0)

1

s
.

We have

Vs0(y) =

∫
(2)

gN(s, s0)y−sds.
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Now we prove, by induction, that for any n ≥ 0,

V (n)
s0

(y) = (−1)ny−n
∫

(2)

Pn(s)gN(s, s0)y−sds (4.3)

where Pn(s) is a polynomial of degree n, and for any n,

Pn+1(s) = (s+ n)Pn(s).

For n = 0 the statement is true with P0(s) = 1. Assuming (4.3) and taking derivatives,

we get

V (n+1)
s0

(y) = −n(−1)ny−n−1

∫
(2)

Pn(s)gN(s, s0)y−sds

− (−1)ny−n
∫

(2)

sPn(s)gN(s, s0)y−s−1ds

= (−1)n+1y−n−1

∫
(2)

(s+ n)Pn(s)gN(s, s0)y−sds

= (−1)n+1y−(n+1)

∫
(2)

Pn+1(s)gN(s, s0)y−sds.

Now similar to the proof of the previous parts, one can show that

V (j)
s0

(y)� d(N)y−j(1 +
y

|s0|
3
2

)−A log(2 +
1

y
).

The implied constant depends upon N, s0 and j.

The proof of the lemma is complete. �

In the proof of our main theorem we need a smooth partition of unity. The next

lemma will guarantee the existence of such a partition.

Lemma 4.4 There exists a non-negative C∞ function h with support [1, 2], such that

for any x > 0,
∞∑

k=−∞

h(
x

2k/2
) = 1.

67



Proof We know that there is an absolutely increasing and C∞ function h : [1,
√

2]→
[0, 1] such that

h(1) = 0, h(
√

2) = 1, h′(1) = h′(
√

2) = 0.

We extend the domain of h to [
√

2, 2] by setting

h(x) = 1− h(
x√
2

)

where x ∈ [
√

2, 2]. For x ∈ R \ [1, 2] we put h(x) = 0. It is apparent that h is

non-negative, smooth on R, and that for any 1 ≤ t ≤
√

2,

h(t) + h(
√

2t) = 1. (4.4)

We claim that h satisfies the desired identity. To do this, first notice that for any x > 0,

there is a unique n ∈ Z such that 2
n
2 ≤ x < 2

(n+1)
2 . Note that

h
( x

2k/2

)
6= 0 ⇐⇒ 2

k
2 < x < 2

k+2
2 ⇐⇒ k = n− 1, n.

Therefore, by (4.4), we have

∞∑
k=−∞

h(
x

2k/2
) = h(

x

2(n−1)/2
) + h(

x

2n/2
) = 1.

The proof is complete. �

In the proof of Theorem 4.1, we need some facts from the theory of modular forms.

We start by the following definition.

Definition 4.5 For a cusp form f ∈ Sk(N) of weight k and level N , let

ωf =
(4π)k−1

(k − 2)!
〈f, f〉

where 〈f, f〉 stands for the Petersson inner product.

The next two lemmas give estimates for the values of ωf .

Lemma 4.6 For a newform f ∈ S2(N), we have

ωf � N(logN)3.
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Proof By (2.6) and for k = 2, we have

ωf =
N

2π2
L(sym2 f, 1).

By applying the Phragmén-Lindelöf theorem for L(sym2 f, s), and for Re(s) = 1 (see

[13], p. 336),

L(sym2 f, 1)� (logN)3 .

This completes the proof. �

Lemma 4.7 We have ∑
f∈FN

ω−1
f = 1 +O(N−

3
2 ).

Proof Let af (n) denote the n-th normalized Fourier coefficient of f . We have,∑
f∈FN

af (m)af (n)

4π〈f, f〉
= δmn +O

(
N−

3
2 (g.c.d.(m,n))

1
2
√
mn
)

(see [14], Proposition 1). Here

δmn =

{
1 if m = n

0 if m 6= n

is the Kronecker symbol. Putting m = n = 1 in the above formula implies the result.

The proof is complete. �

4.4 The Proof

To start the proof of our main theorem, we need one more ingredient. The proof of

the following theorem is very long and technical. So, we only state it without proof.

Theorem 4.8 Let s0 be a point inside the critical strip. Also let g be a smooth function

with support [1, 2] satisfying

g(j)(x)� |s0|j

for any j ≥ 0. For X ≥ 1 we define the partial sums

Sf (X) =
∑
n

af (n
2)g(

n

X
)
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and their mean square

S(X) =
∑
f∈FN

ω−1
f |Sf (X)|2.

Then we have

S(X)� |s0|3+ε(NX)ε(N−1X2 +X)

for any ε > 0. The implied constant depends only on ε.

Proof See [10], Theorem 5.1. �

We are ready to prove the main theorem of this chapter.

Proof of Theorem 4.1 Let ε be the reciprocal of a natural number bigger than 2 and

let A = 3 +
2

ε
. It is plain that

A ∈ N, 0 < ε <
1

2
,
A+ ε

A− 2
= 1 + ε.

Now write L(sym2 f, s0) = L1(f, s0) + L2(f, s0) + L3(f, s0) + L4(f, s0), where

L1(f, s0) =
∑

n≤N1+ε

af (n
2)

ns0
Vs0

( n
N

)
,

L2(f, s0) =
∑

n≥N1+ε

af (n
2)

ns0
Vs0

( n
N

)
,

L3(f, s0) = N1−2s0
L∞(sym2, 1− s0)

L∞(sym2, s0)

∑
n≤N1+ε

af (n
2)

n1−s0
V1−s0

( n
N

)
,

L4(f, s0) = N1−2s0
L∞(sym2, 1− s0)

L∞(sym2, s0)

∑
n≥N1+ε

af (n
2)

n1−s0
V1−s0

( n
N

)
.

Our first goal is to estimate the Li(f, s0)’s. We start with L2(f, s0). By Deligne’s

bound (see Theorem 1.4), and part (iii) of Lemma 4.3,

|L2(f, s0)| =

∣∣∣∣∣∣
∑

n≥N1+ε

af (n
2)

ns0
Vs0

( n
N

)∣∣∣∣∣∣
≤

∑
n≥N1+ε

|af (n2)|
nσ0

∣∣∣Vs0 ( nN )∣∣∣
�

∑
n≥N1+ε

d(n2)

nσ0
d(N)

|s0|
3
2
A

(|s0|
3
2 + n

N
)A

log

(
2 +

N

n

)
.
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Since
A+ ε

A− 2
= 1 + ε, we have

n ≥ N1+ε ⇐⇒ n

N
≥
(
n2N ε

) 1
A .

By using the classical inequality

d(n)� nδ

for any δ > 0 (see [15], Exercise 1.3.2), and by ignoring |s0|
3
2 in the denominator, we

get

L2(f, s0) � d(N)|s0|
3
2
A
∑

n≥N1+ε

nε

nσ0

1

( n
N

)A

� d(N)|s0|
3
2
A
∑

n≥N1+ε

1

nσ0−ε
1

n2N ε

=
d(N)|s0|

3
2
A

N ε

∑
n≥N1+ε

1

n2+σ0−ε

� d(N)|s0|
3
2
A

N ε
. (4.5)

With a similar argument we attain

L4(f, s0) � d(N)N1−2σ0

N ε

∣∣∣∣L∞(sym2, 1− s0)

L∞(sym2, s0)

∣∣∣∣ |1− s0|
3
2
A

� d(N)N1−2σ0

N ε
|1− s0|

3
2
A. (4.6)

This is true, since by Stirling’s formula, the ratio of the L∞-factors is bounded.

To estimate L1(f, s0), we first rewrite it as a new sum involving the function h in

Lemma 4.4. For simplicity, we use X for 2k/2. Using the main identity for h in Lemma

4.4, we have

L1(f, s0) =
∑

n≤N1+ε

af (n
2)

ns0
Vs0

( n
N

)
=

∑
n≤N1+ε

(
af (n

2)

ns0
Vs0

( n
N

) ∞∑
k=−∞

h
( n
X

))

=
∑

n≤N1+ε

∑
k

af (n
2)

ns0
Vs0

( n
N

)
h
( n
X

)
.
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In the last equality, since one sum is finite, we can interchange the order of the addition.

Note that the support of h is [1, 2], so, we can assume that X < n < 2X. Also, since

n ≥ 1, k is in fact ≥ −1. Therefore,

L1(f, s0) =
∑
k≥−1

∑
X<n<X

af (n
2)

ns0
Vs0

( n
N

)
h
( n
X

)

=
∑
k≥−1


d(N)

(
1 + X

N |s0|
3
2

)−A
log
(
2 + N

X

)
d(N)

(
1 + X

N |s0|
3
2

)−A
log
(
2 + N

X

) ∑
X<n<2X

a(n
2)

ns0
Vs0

( n
N

)
h
( n
X

)

=
∑
k≥−1

 d(N) log
(
2 + N

X

)
Xs0

(
1 + X

N |s0|
3
2

)A ∑
X<n<2X

af (n
2)g
( n
X

) ,

where

g(x) =
1

d(N)

(
1 + X

N |s0|
3
2

)−A
log
(
2 + N

X

)x−s0Vs0
(
X

N
x

)
h(x).

To be consistent with the notations of Theorem 4.8, we put

Sf (X) =
∑

af (n
2)g
( n
X

)
.

So,

L1(f, s0) =
∑
k≥−1

d(N) log
(
2 + N

X

)(
1 + X

N |s0|
3
2

)A Sf (X)

Xs0
.

In a similar fashion

L3(f, s0) = N1−2s0
L∞(sym2, 1− s0)

L∞(sym2, s0)

∑
k≥−1

d(N) log
(
2 + N

X

)(
1 + X

N |1−s0|
3
2

)A Sf (X)

X1−s0
.

By the Cauchy-Schwarz inequality

∣∣L(sym2 f, s0)
∣∣2 =

∣∣∣∣∣
4∑
i=1

Li(f, s0)

∣∣∣∣∣
2

≤ 4
4∑
i=1

|Li(f, s0)|2 .
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So, we have ∑
f∈FN

ω−1
f |L(sym2 f, s0)|2

�
∑
f

ω−1
f |L1(f, s0)|2 +

∑
f

ω−1
f |L2(f, s0)|2 +

∑
f

ω−1
f |L3(f, s0)|2 +

∑
f

ω−1
f |L4(f, s0)|2.

Now we estimate the above four sums. For the first sum, by applying the Cauchy-

Schwarz inequality, we deduce

∑
f

ω−1
f |L1(f, s0)|2 =

∑
f

ω−1
f

∣∣∣∣∣∣∣∣∣
∑
k≥−1

d(N) log
(
2 + N

X

)(
1 + X

N |s0|
3
2

)A Sf (X)

Xs0

∣∣∣∣∣∣∣∣∣
2

�
∑
f

ω−1
f

∑
k≥−1

d2(N) log2
(
2 + N

X

)(
1 + X

N |s0|
3
2

)2A

∑
k≥−1

|Sf (X)|2

X2σ0


� d2(N)

∑
k≥−1

log2(2 + N
X

)

(1 + X

N |s0|
3
2

)2A

∑
k≥−1

1

X2σ0

(∑
f

ω−1
f |Sf (X)|2

)
.

(4.7)

It can be shown that the function g(x) satisfies the conditions of Theorem 4.8. More-

over, note that the conditions n ≤ N1+ε and X < n < 2X imply that

−1 ≤ k < 2(1 + ε) log2 N.

So, by applying the result of Theorem 4.8 in (4.7), we deduce∑
f

ω−1
f |L1(f, s0)|2 � d2(N)N ε

∑
k≥−1

1

X2σ0
|s0|3+ε(NX)ε

(
N−1X2 +X

)
� |s0|3+εN ε. (4.8)

Here we are using the fact that 3
4
≤ σ0 ≤ 1. For convenience, whenever it is necessary,

we replace a constant multiple of ε with ε.
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Also note that (4.5) and Lemma 4.7 imply

∑
f

ω−1
f |L2(f, s0)|2 �

∑
f

ω−1
f

(
d(N)|s0|

3
2
A

N ε

)2

=
d2(N)|s0|3A

N ε

∑
f

ω−1
f

� |s0|3AN−ε

≤ |s0|3AN ε. (4.9)

In a similar fashion we derive the following inequalities∑
f

ω−1
f |L3(f, s0)|2 � |1− s0|3+εN2−4σ0+ε

� |s0|3+εN ε, (4.10)

and ∑
f

ω−1
f |L4(f, s0)|2 � |s0|3AN ε. (4.11)

Considering (4.8), (4.9), (4.10) and (4.11), we arrive at∑
f∈FN

ω−1
f |L(sym2 f, s0)|2 � |s0|3AN ε.

Finally, by using the upper bound of Lemma 4.6, ωf � N1+ε, we conclude that∑
f∈FN

|L(sym2 f, s0)|2 =
∑
f∈FN

ωfω
−1
f |L(sym2 f, s0)|2

� N1+ε
∑
f∈FN

ω−1
f |L(sym2 f, s0)|2

� |s0|3AN1+ε = |s0|9+ 6
εN1+ε.

The proof is now complete. �
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4.5 A Non-Vanishing Result

In this final section, we show how the combination of the main result of this chapter

(Theorem 4.1) with a known theorem about the values of the symmetric square L-

functions on average will lead to a non-vanishing result. In [2], Akbary proved the

following.

Theorem 4.9 Let N be prime, then there exists C > 0 such that for any s0 = σ0 + it0

with 1− 1
46
< Re(s) ≤ 1, we have∑

f∈FN

L(sym2 f, s0) = ζ(1 + s0)ζN(2s0)
N − 1

12
+O

(
N

91
46
−σ0(logN)C

|Γ( s0+1
2

)|2|Γ( s0+2
2

)|

)
where the implied constant depends only on σ0.

Proof See [2], Theorem 1 and formula (9). �

By using this theorem, we can prove the following.

Theorem 4.10 Let N be a prime number and let s0 = σ0 + it0 with 1− 1
46
< σ0 < 1.

Then for any ε > 0, there are positive constants Cs0,ε and C ′s0,ε (depending only on s0

and ε), such that for any prime N > C ′s0,ε, there exist at least Cs0,εN
1−ε newforms f

of weight 2 and level N for which L(sym2 f, s0) 6= 0.

Proof By the asymptotic formula of Theorem 4.9, and by Cauchy-Schwarz inequality

we can write

N2 �

∣∣∣∣∣∑
f∈FN

L(sym2 f, s0)

∣∣∣∣∣
2

≤ #
{
f ∈ FN : L(sym2 f, s0) 6= 0

} ∑
f∈FN

|L(sym2 f, s0)|2

� #
{
f ∈ FN : L(sym2 f, s0) 6= 0

}
|s0|3AN1+ε.

Thus,

#
{
f ∈ FN : L(sym2 f, s0) 6= 0

}
� 1

|s0|3A
N1−ε.

The proof is complete. �
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Finally we present a non-vanishing corollary of our theorem.

Corollary 4.11 For any s0 = σ0 + it0 with 1− 1
46
< σ0 < 1, there are infinitely many

symmetric square L-functions associated to newforms f such that L(sym2 f, s0) 6= 0.

Proof Note that there are infinitely many (large) primes. So, applying the previous

theorem for newforms of different levels corresponding to different primes yields the

result.

This completes the proof. �
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